TensorRT-LLMs/tensorrt_llm/models/medusa/model.py
Kaiyu Xie b57221b764
Update TensorRT-LLM (#941)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-23 23:22:35 +08:00

254 lines
9.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from collections import OrderedDict
from typing import Optional
import tensorrt as trt
from tensorrt_llm.models.generation_mixin import GenerationMixin
from ..._common import default_net
from ..._utils import pad_vocab_size
from ...functional import ACT2FN, Tensor, gather_last_token_logits, stack
from ...layers import ColumnLinear
from ...mapping import Mapping
from ...module import Module, ModuleList
class MedusaLayer(Module):
def __init__(
self,
hidden_size,
hidden_act="silu",
dtype=None,
mapping=Mapping(),
):
super().__init__()
self.linear = ColumnLinear(hidden_size,
hidden_size,
dtype=dtype,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
gather_output=True)
self.hidden_act = hidden_act
return
def forward(self, x):
return x + ACT2FN[self.hidden_act](self.linear(x))
class MedusaHead(Module):
def __init__(
self,
num_layers,
hidden_size,
vocab_size,
hidden_act="silu",
dtype=None,
mapping=Mapping(),
):
super().__init__()
self.medusa_layers = ModuleList([
MedusaLayer(hidden_size=hidden_size,
hidden_act=hidden_act,
dtype=dtype,
mapping=mapping) for _ in range(num_layers)
])
self.lm_head = ColumnLinear(hidden_size,
vocab_size,
bias=False,
dtype=dtype,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
gather_output=True)
return
def forward(self, x):
hidden_states = x
for layer in self.medusa_layers:
hidden_states = layer(hidden_states)
return self.lm_head(hidden_states)
class MedusaLM(Module, GenerationMixin):
def __init__(
self,
base_model: Module,
mapping=Mapping(),
num_medusa_heads=4,
num_medusa_layers=1,
hidden_act='silu',
):
super().__init__()
self.base_model = base_model
self.mapping = mapping
self.hidden_size = base_model.hidden_size
self.vocab_size = base_model.vocab_size
self.num_medusa_heads = num_medusa_heads
self.num_medusa_layers = num_medusa_layers
self.hidden_act = hidden_act
vocab_size_padded = pad_vocab_size(self.vocab_size, mapping.tp_size)
self.medusa_heads = ModuleList([
MedusaHead(num_layers=num_medusa_layers,
hidden_size=self.hidden_size,
vocab_size=vocab_size_padded,
hidden_act=self.hidden_act,
dtype=base_model.dtype,
mapping=mapping) for _ in range(num_medusa_heads)
])
return
def forward(
self,
input_ids,
position_ids=None,
use_cache=False,
last_token_ids=None,
attention_mask=None,
medusa_position_offsets=None,
medusa_packed_mask=None,
kv_cache_params=None,
attention_params=None,
hidden_states=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None,
output_original=True,
):
parent_model = inspect.getmro(type(
self.base_model))[1] # get the pre-LMHead model
hidden_states = parent_model.forward(
self.base_model, input_ids, position_ids, use_cache, attention_mask,
medusa_position_offsets, medusa_packed_mask, kv_cache_params,
attention_params, hidden_states, prompt_embedding_table,
prompt_tasks, prompt_vocab_size, lora_params)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
hidden_states = gather_last_token_logits(
hidden_states,
last_token_ids,
default_net().plugin_config.remove_input_padding,
)
# [batch_size, hidden_size] -> [batch_size, vocab_size]
if output_original:
lm_logits = self.base_model.lm_head(hidden_states)
lm_logits.mark_output('logits', self.base_model.logits_dtype)
medusa_logits = []
for i in range(self.num_medusa_heads):
medusa_logits.append(self.medusa_heads[i](hidden_states))
# [num_medusa_heads, batch_size, num_medusa_tokens + 1, padded_vocab_size].
# Remove padding [num_medusa_heads, batch_size * num_medusa_tokens + 1, padded_vocab_size].
medusa_logits = stack(medusa_logits, dim=0)
medusa_logits.mark_output('medusa_logits',
self.base_model.logits_dtype)
else:
hidden_states.mark_output('hidden_states_output',
self.base_model.dtype)
if use_cache and default_net().plugin_config.paged_kv_cache == False:
for i, present in zip(
self.mapping.pp_layers(self.base_model.num_layers),
presents):
present.mark_output(f'present_key_value_{i}',
self.base_model.kv_dtype)
if self.mapping.is_last_pp_rank():
if output_original:
return (medusa_logits, lm_logits, presents)
return (medusa_logits, presents)
return (hidden_states, presents)
else:
if self.mapping.is_last_pp_rank():
if output_original:
return medusa_logits, lm_logits
return lm_logits
return hidden_states
def prepare_inputs(
self,
max_batch_size,
max_input_len,
max_seq_len,
use_cache,
max_medusa_tokens_len,
max_beam_width,
max_num_tokens: int = None,
prompt_embedding_table_size: int = 0,
):
base_model_inputs = self.base_model.prepare_inputs(
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_seq_len=max_seq_len,
use_cache=use_cache,
max_beam_width=max_beam_width,
max_num_tokens=max_num_tokens,
prompt_embedding_table_size=prompt_embedding_table_size,
max_draft_len=max_medusa_tokens_len)
num_profiles = len(base_model_inputs[0].profiles)
max_gen_token_len = max_medusa_tokens_len + 1
medusa_mask_len_range = [[0, max_gen_token_len, max_gen_token_len]
] * num_profiles
medusa_position_len_range = [[0, max_gen_token_len, max_gen_token_len]
] * num_profiles
# 32 bits packed mask aligned.
num_packed_medusa_masks = (max_medusa_tokens_len + 1 + 32 - 1) // 32
packed_medusa_mask_len_range = [[0, 1, num_packed_medusa_masks]
] * num_profiles
# batch beam range (different sequence may have different medusa offsets or packed masks).
bb_range_cxt = GenerationMixin.default_range(max_batch_size)
bb_range_gen = GenerationMixin.default_range(max_batch_size *
max_beam_width)
# enable_two_optimization_profiles
if num_profiles == 2:
bb_range = [bb_range_cxt, bb_range_gen]
else:
bb_range = [bb_range_gen]
# medusa position offsets that are fixed during the whole session.
# it will be shared among all sequences.
medusa_position_offsets = Tensor(
name='medusa_position_offsets',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('medusa_position_ids_dim0', medusa_position_len_range),
]),
)
medusa_packed_mask = Tensor(
name='medusa_packed_mask',
dtype=trt.int32,
shape=[-1, -1, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('medusa_packed_mask_dim0', medusa_mask_len_range),
('medusa_packed_mask_dim1', packed_medusa_mask_len_range),
]),
)
return base_model_inputs[:5] + (
medusa_position_offsets,
medusa_packed_mask,
) + base_model_inputs[5:]