mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
303 lines
14 KiB
C++
303 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "explicitDraftTokensLayer.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/kernels/penaltyTypes.h"
|
|
#include "tensorrt_llm/kernels/speculativeDecoding/common.h"
|
|
#include "tensorrt_llm/kernels/speculativeDecoding/explicitDraftTokensKernels.h"
|
|
#include "tensorrt_llm/layers/defaultDecodingParams.h"
|
|
#include "tensorrt_llm/layers/layerUtils.h"
|
|
|
|
#include <algorithm>
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels;
|
|
using namespace tensorrt_llm::kernels::speculative_decoding;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm::layers
|
|
{
|
|
|
|
template <typename T>
|
|
ExplicitDraftTokensLayer<T>::ExplicitDraftTokensLayer(
|
|
DecoderDomain const& decoderDomain, std::shared_ptr<BufferManager> bufferManager)
|
|
: BaseLayer(decoderDomain, bufferManager)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
allocateBuffer();
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void ExplicitDraftTokensLayer<T>::allocateBuffer()
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
mTemperature
|
|
= mBufferManager->pinnedPool(ITensor::makeShape({mDecoderDomain.getBatchSize()}), TRTDataType<float>::value);
|
|
|
|
mScanWorkspaceSizeInBytes = invokeScanGenerationLengths(
|
|
nullptr, mScanWorkspaceSizeInBytes, nullptr, nullptr, mDecoderDomain.getBatchSize(), getStream());
|
|
mReduceWorkspaceSizeInBytes = invokeReduceMaxGenerationLengths(
|
|
nullptr, mReduceWorkspaceSizeInBytes, nullptr, nullptr, mDecoderDomain.getBatchSize(), getStream());
|
|
|
|
auto workspaceSizeInBytes = std::max(mScanWorkspaceSizeInBytes, mReduceWorkspaceSizeInBytes);
|
|
mWorkspaceDevice = mBufferManager->gpu(workspaceSizeInBytes, nvinfer1::DataType::kINT8);
|
|
|
|
mCurandStatesDevice = mBufferManager->gpu(
|
|
ITensor::makeShape({mDecoderDomain.getBatchSize(), sizeof(curandState_t)}), TRTDataType<int8_t>::value);
|
|
auto const batchSizeShape = ITensor::makeShape({mDecoderDomain.getBatchSize()});
|
|
mRandomSeedsDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<int64_t>::value);
|
|
mGenerationLengthInclusiveSum = mBufferManager->gpu(batchSizeShape, TRTDataType<SizeType32>::value);
|
|
mMaxGenerationLength = mBufferManager->gpu(ITensor::makeShape({1}), TRTDataType<SizeType32>::value);
|
|
mTemperatureDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<float>::value);
|
|
mBestPathIndicesSlots = mBufferManager->gpu(batchSizeShape, TRTDataType<SizeType32>::value);
|
|
mLastDraftIndicesSlots = mBufferManager->gpu(ITensor::makeShape({mDecoderDomain.getBatchSize()
|
|
* mDecoderDomain.getSpeculativeDecodingModule()->getMaxNumPaths()
|
|
* mDecoderDomain.getSpeculativeDecodingModule()->getMaxPathLen()}),
|
|
TRTDataType<SizeType32>::value);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void ExplicitDraftTokensLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, BufferConstPtr batchSlots,
|
|
std::shared_ptr<BaseSetupParams> const& baseSetupParams)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto setupParams = std::dynamic_pointer_cast<ExplicitDraftTokensSetupParams>(baseSetupParams);
|
|
auto batchSlotsPtr = bufferCast<SizeType32>(*batchSlots);
|
|
auto randomSeedDevicePtr = bufferCast<uint64_t>(*mRandomSeedsDevice);
|
|
auto curandStatesDevicePtr = reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice));
|
|
|
|
if (setupParams->randomSeed)
|
|
{
|
|
if (setupParams->randomSeed->size() == 1)
|
|
{
|
|
invokeCurandInitialize(
|
|
curandStatesDevicePtr, batchSlotsPtr, batchSize, setupParams->randomSeed->front(), getStream());
|
|
sync_check_cuda_error();
|
|
}
|
|
else
|
|
{
|
|
TLLM_CHECK_WITH_INFO(setupParams->randomSeed->size() == batchSize, "Random seed vector size mismatch.");
|
|
TensorPtr randomSeedsDeviceSlice = ITensor::slice(mRandomSeedsDevice, 0, batchSize);
|
|
mBufferManager->copy(setupParams->randomSeed.value().data(), *randomSeedsDeviceSlice, MemoryType::kCPU);
|
|
invokeCurandBatchInitialize(
|
|
curandStatesDevicePtr, batchSlotsPtr, batchSize, randomSeedDevicePtr, getStream());
|
|
sync_check_cuda_error();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Initialize curand states using the default seed 0.
|
|
invokeCurandInitialize(
|
|
curandStatesDevicePtr, batchSlotsPtr, batchSize, DefaultDecodingParams::getSeed(), getStream());
|
|
}
|
|
|
|
// Setup penalties.
|
|
FillBuffers const fillBuffers{batchSize, mDecoderDomain.getBatchSize(), mBufferManager};
|
|
|
|
fillBuffers(setupParams->temperature, DefaultDecodingParams::getTemperature(), mTemperature, mTemperatureDevice,
|
|
batchSlots, getLimitsPenalty(DecodingPenaltyType::Temperature), "temperature penalty");
|
|
|
|
fillContextBuffers(batchSize, batchSlots, *setupParams);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void ExplicitDraftTokensLayer<T>::fillContextBuffers(
|
|
SizeType32 batchSize, BufferConstPtr batchSlots, ExplicitDraftTokensSetupParams const& setupParams)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
FillContextExplicitDraftTokensParams<T> params;
|
|
params.randDataSample = bufferCast<T>(*setupParams.randomDataSample);
|
|
params.outputTemperatures = bufferCast<T>(*setupParams.temperatures);
|
|
params.inputTemperatures = bufferCastOrNull<float>(mTemperatureDevice);
|
|
params.curandState = reinterpret_cast<curandState_t*>(bufferCastOrNull<int8_t>(mCurandStatesDevice));
|
|
params.batchSlots = bufferCast<SizeType32>(*batchSlots);
|
|
params.batchSize = batchSize;
|
|
|
|
params.checkParams();
|
|
|
|
invokeFillContextBuffers(params, getStream());
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void ExplicitDraftTokensLayer<T>::forwardAsync(
|
|
std::shared_ptr<BaseDecodingOutputs> const& baseOutputs, std::shared_ptr<BaseDecodingInputs> const& baseInputs)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto inputs = std::dynamic_pointer_cast<ExplicitDraftTokensInputs>(baseInputs);
|
|
auto outputs = std::dynamic_pointer_cast<ExplicitDraftTokensOutputs>(baseOutputs);
|
|
|
|
// DO NOT CHANGE THE ORDER.
|
|
|
|
// Convert masks to packed masks per request.
|
|
convertPackedMask(*outputs, *inputs);
|
|
|
|
// Slice output ids, pos ids, next draft tokens.
|
|
splitInputDataToBatchSlots(*outputs, *inputs);
|
|
|
|
// Pack accepted paths for KV cache rewind.
|
|
packAcceptedPaths(*outputs, *inputs);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
size_t ExplicitDraftTokensLayer<T>::getWorkspaceSize() const noexcept
|
|
{
|
|
return mWorkspaceDevice->getSizeInBytes();
|
|
}
|
|
|
|
template <typename T>
|
|
void ExplicitDraftTokensLayer<T>::convertPackedMask(
|
|
ExplicitDraftTokensOutputs const& outputs, ExplicitDraftTokensInputs const& inputs)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto batchSlots = bufferCast<SizeType32>(*inputs.seqSlots);
|
|
auto masksDevice = bufferCast<bool>(*inputs.masks);
|
|
auto generationLengths = bufferCast<SizeType32>(*inputs.generationLengths);
|
|
auto packedMasksDevice = bufferCast<SizeType32>(*outputs.packedMasks);
|
|
|
|
auto const batchSize = inputs.localBatchSize;
|
|
|
|
auto generationLengthInclusiveSumPtr = bufferCastOrNull<SizeType32>(mGenerationLengthInclusiveSum);
|
|
auto workSpaceDevicePtr = mWorkspaceDevice->data();
|
|
auto maxGenerationLengthPtr = bufferCastOrNull<SizeType32>(mMaxGenerationLength);
|
|
invokeScanReduceGenerationLengths(batchSize, generationLengths, workSpaceDevicePtr, mScanWorkspaceSizeInBytes,
|
|
generationLengthInclusiveSumPtr, workSpaceDevicePtr, mReduceWorkspaceSizeInBytes, maxGenerationLengthPtr,
|
|
getStream());
|
|
|
|
invokeConvertMaskToPackedMask(batchSize, generationLengthInclusiveSumPtr, maxGenerationLengthPtr, masksDevice,
|
|
batchSlots, mDecoderDomain.getSpeculativeDecodingModule()->getMaxDecodingDraftTokens(),
|
|
mDecoderDomain.getSpeculativeDecodingModule()->getMaxDecodingTokens(), packedMasksDevice, getStream());
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void ExplicitDraftTokensLayer<T>::splitInputDataToBatchSlots(
|
|
ExplicitDraftTokensOutputs const& outputs, ExplicitDraftTokensInputs const& inputs)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto const batchSize = inputs.localBatchSize;
|
|
auto const maxSeqLen = outputs.outputIds->getDimension<-1>();
|
|
|
|
ExtractExplicitDraftTokensParams<T> params;
|
|
|
|
params.outputIds = bufferCast<TokenIdType>(*outputs.outputIds);
|
|
params.outputPositionIdsBase = bufferCast<SizeType32>(*outputs.positionIdsBase);
|
|
params.outputPositionIds = bufferCast<SizeType32>(*outputs.nextDraftPosIds);
|
|
params.outputNextDraftTokens = bufferCast<TokenIdType>(*outputs.nextDraftTokens);
|
|
params.unpackedNextDraftTokens = bufferCast<TokenIdType>(*outputs.unpackedNextDraftTokens);
|
|
params.unpackedNextDraftIndices = bufferCast<SizeType32>(*outputs.unpackedNextDraftIndices);
|
|
params.acceptedLengths = bufferCast<SizeType32>(*outputs.numNewTokens.value());
|
|
params.nextDraftLengths = bufferCast<SizeType32>(*outputs.nextDraftLengths);
|
|
params.prevDraftLengths = bufferCast<SizeType32>(*outputs.prevDraftLengths);
|
|
params.sequenceLengths = bufferCast<SizeType32>(*outputs.sequenceLength.value());
|
|
params.randDataSample = bufferCast<T>(*outputs.randomDataSample);
|
|
params.randDataVerification = bufferCast<T>(*outputs.randomDataValidation);
|
|
params.outputDraftProbs = bufferCast<T>(*outputs.nextDraftProbs);
|
|
params.outputTemperatures = bufferCast<T>(*outputs.temperatures);
|
|
params.outputGenerationLengths = bufferCast<SizeType32>(*outputs.generationLengths);
|
|
params.outputBestPathIndices = bufferCast<SizeType32>(*mBestPathIndicesSlots);
|
|
params.outputLastDraftIndices = bufferCast<SizeType32>(*mLastDraftIndicesSlots);
|
|
|
|
params.batchSlots = bufferCast<SizeType32>(*inputs.seqSlots);
|
|
params.nextDraftTokens = bufferCast<TokenIdType>(*inputs.nextDraftTokens);
|
|
params.lastDraftTokens = bufferCast<TokenIdType>(*inputs.lastDraftTokens);
|
|
params.inputUnpackedNextDraftIndices = bufferCast<SizeType32>(*inputs.nextDraftIndices);
|
|
params.bestPathLengths = bufferCast<SizeType32>(*inputs.bestPathLengths);
|
|
params.bestPathIndices = bufferCast<SizeType32>(*inputs.bestPathIndices);
|
|
params.inputPositionIdsBase = bufferCast<SizeType32>(*inputs.positionIdsBase);
|
|
params.packedPositionIds = bufferCast<SizeType32>(*inputs.packedPosIds);
|
|
params.nextFlatTokens = bufferCast<TokenIdType>(*inputs.nextFlatTokens);
|
|
params.nextDraftProbs = bufferCast<T>(*inputs.nextDraftProbs);
|
|
params.lastGenerationLengths = bufferCastOrNull<SizeType32>(inputs.lastGenerationLengths);
|
|
params.generationLengthInclusiveSum = bufferCast<SizeType32>(*mGenerationLengthInclusiveSum);
|
|
params.lastDraftIndices = bufferCast<SizeType32>(*inputs.lastDraftIndices);
|
|
params.inputTemperatures = bufferCast<float>(*mTemperatureDevice);
|
|
params.curandState = reinterpret_cast<curandState_t*>(bufferCastOrNull<int8_t>(mCurandStatesDevice));
|
|
params.batchSize = batchSize;
|
|
params.numPaths = mDecoderDomain.getSpeculativeDecodingModule()->getMaxNumPaths();
|
|
params.maxPathLength = mDecoderDomain.getSpeculativeDecodingModule()->getMaxPathLen();
|
|
params.maxSeqLen = maxSeqLen;
|
|
params.vocabSize = mDecoderDomain.getVocabSizePadded();
|
|
params.numContextRequests = batchSize - inputs.lastDraftTokens->getDimension<0>();
|
|
params.numGenerationRequests = inputs.lastDraftTokens->getDimension<0>();
|
|
|
|
params.checkParams();
|
|
|
|
// Copy max generation length
|
|
mBufferManager->copy(*inputs.maxGenLengthDevice, *outputs.maxGenLengthHost);
|
|
|
|
invokeExtractExplicitDraftTokens(params, getStream());
|
|
|
|
invokeCopyProbs(params, getStream());
|
|
|
|
// Copy generation lengths
|
|
mBufferManager->copy(*outputs.generationLengths, *outputs.generationLengthsHost);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void ExplicitDraftTokensLayer<T>::packAcceptedPaths(
|
|
ExplicitDraftTokensOutputs const& outputs, ExplicitDraftTokensInputs const& inputs)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto const batchSize = inputs.localBatchSize;
|
|
|
|
auto numNewTokens = bufferCast<SizeType32>(*outputs.numNewTokens.value());
|
|
auto numNewTokensCumSum = bufferCast<SizeType32>(*outputs.numNewTokensCumSum);
|
|
auto pathsOffsets = bufferCast<SizeType32>(*outputs.pathsOffsets);
|
|
auto batchSlots = bufferCast<SizeType32>(*inputs.batchSlots);
|
|
auto bestPathIndicesSlotsPtr = bufferCastOrNull<SizeType32>(mBestPathIndicesSlots);
|
|
auto lastDraftIndicesSlotsPtr = bufferCastOrNull<SizeType32>(mLastDraftIndicesSlots);
|
|
|
|
TLLM_CHECK_WITH_INFO(batchSlots != nullptr, "Batch slots must be provided for ExplicitDraftTokensLayer");
|
|
TLLM_CHECK_WITH_INFO(numNewTokens != nullptr, "Accepted lengths must be provided for ExplicitDraftTokensLayer");
|
|
TLLM_CHECK_WITH_INFO(
|
|
numNewTokensCumSum != nullptr, "numNewTokensCumSum must be provided for ExplicitDraftTokensLayer");
|
|
TLLM_CHECK_WITH_INFO(pathsOffsets != nullptr, "pathsOffsets must be provided for ExplicitDraftTokensLayer");
|
|
invokePackAcceptedPaths(numNewTokensCumSum, pathsOffsets, numNewTokens, bestPathIndicesSlotsPtr,
|
|
lastDraftIndicesSlotsPtr, batchSlots, batchSize,
|
|
mDecoderDomain.getSpeculativeDecodingModule()->getMaxNumPaths(),
|
|
mDecoderDomain.getSpeculativeDecodingModule()->getMaxPathLen(), false, getStream());
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template class ExplicitDraftTokensLayer<float>;
|
|
template class ExplicitDraftTokensLayer<half>;
|
|
|
|
} // namespace tensorrt_llm::layers
|