TensorRT-LLMs/cpp/tensorrt_llm/layers/samplingLayer.cpp
2024-08-13 22:34:33 +08:00

199 lines
7.6 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/layers/topKSamplingLayer.h"
#include "tensorrt_llm/layers/topPSamplingLayer.h"
#include "samplingLayer.h"
#include <algorithm>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm::layers
{
template <typename T>
SamplingLayer<T>::SamplingLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain,
std::shared_ptr<BufferManager> bufferManager)
: BaseLayer(decoderDomain, bufferManager)
, mDecodingMode(mode)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK_WITH_INFO(!mDecodingMode.isBeamSearch(), "SamplingLayer does not support Beam search mode");
TLLM_CHECK_WITH_INFO(mDecodingMode.isTopKorTopP(), "SamplingLayer requires TopK or TopP mode");
if (mDecodingMode.isTopK())
{
mSamplingLayers.emplace_back(std::make_unique<TopKSamplingLayer<T>>(decoderDomain, mBufferManager));
}
if (mDecodingMode.isTopP())
{
mSamplingLayers.emplace_back(
std::make_unique<TopPSamplingLayer<T>>(decoderDomain, mBufferManager, /* deterministic */ true));
}
allocateBuffer(decoderDomain.getBatchSize());
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void SamplingLayer<T>::allocateBuffer(SizeType32 batchSize)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
size_t workspaceSize = 0;
for (auto&& layer : mSamplingLayers)
{
workspaceSize = std::max(workspaceSize, layer->getWorkspaceSize());
}
mCurandStatesDevice
= mBufferManager->gpu(ITensor::makeShape({batchSize, sizeof(curandState_t)}), TRTDataType<int8_t>::value);
auto const batchSizeShape = ITensor::makeShape({batchSize});
mRandomSeedsDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<uint64_t>::value);
mSkipDecodeDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<bool>::value);
mSamplingWorkspaceDevice = mBufferManager->gpu(workspaceSize, TRTDataType<int8_t>::value);
// host buffers.
mSkipDecodeHost = mBufferManager->pinnedPool(batchSizeShape, TRTDataType<bool>::value);
TLLM_CHECK(mSkipDecodeHost != nullptr);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void SamplingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, BufferConstPtr batchSlots,
std::shared_ptr<BaseSetupParams> const& baseSetupParams)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto setupParams = std::dynamic_pointer_cast<SamplingSetupParams>(baseSetupParams);
// If runtime argument has single random seed, using this random seed to
// initialize the random table of all sentences. If the argument has
// [batchSize] random seeds, initializing the random table by different
// random seeds respectively. If no random seed, initialize the random table
// of all sentences by 0 directly.
auto batchSlotsPtr = bufferCast<SizeType32>(*batchSlots);
if (setupParams->randomSeed)
{
auto curandStateDevicePtr = reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice));
if (setupParams->randomSeed->size() == 1)
{
invokeCurandInitialize(
curandStateDevicePtr, batchSlotsPtr, batchSize, setupParams->randomSeed->front(), getStream());
sync_check_cuda_error();
}
else
{
TLLM_CHECK_WITH_INFO(setupParams->randomSeed->size() == batchSize, "Random seed vector size mismatch.");
auto randomSeedsDevicePtr = bufferCast<uint64_t>(*mRandomSeedsDevice);
cudaAutoCpy(randomSeedsDevicePtr, setupParams->randomSeed->data(), batchSize, getStream());
invokeCurandBatchInitialize(
curandStateDevicePtr, batchSlotsPtr, batchSize, randomSeedsDevicePtr, getStream());
sync_check_cuda_error();
}
}
else
{
// Initialize curand states using the default seed 0.
auto curandStatesDevicePtr = reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice));
invokeCurandInitialize(curandStatesDevicePtr, batchSlotsPtr, batchSize, 0, getStream());
}
if (setupParams->outputLogProbs)
{
// FIXME(nkorobov): monotonically growing
mOutputLogProbs = std::any_of(setupParams->outputLogProbs->begin(), setupParams->outputLogProbs->end(),
[this](bool outputLogProbs) { return this->mOutputLogProbs | outputLogProbs; });
}
if (setupParams->cumLogProbs)
{
// FIXME(nkorobov): monotonically growing
mCumLogProbs = std::any_of(setupParams->cumLogProbs->begin(), setupParams->cumLogProbs->end(),
[this](bool cumLogProbs) { return this->mCumLogProbs | cumLogProbs; });
}
for (auto&& layer : mSamplingLayers)
{
layer->setup(batchSize, beamWidth, batchSlots, setupParams);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void SamplingLayer<T>::forwardAsync(
std::shared_ptr<BaseDecodingOutputs> const& outputs, std::shared_ptr<BaseDecodingInputs> const& baseInputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto inputs = std::dynamic_pointer_cast<SamplingInputs>(baseInputs);
auto const batchSize = inputs->logits.value()->getDimension<0>();
auto logits = bufferCast<T>(*inputs->logits.value());
auto endIds = bufferCast<TokenIdType>(*inputs->endIds);
auto batchSlots = bufferCast<SizeType32>(*inputs->batchSlots);
FinishedState const* finishedInput = (inputs->finished)
? reinterpret_cast<FinishedState const*>(bufferCast<FinishedState::UnderlyingType>(*inputs->finished.value()))
: nullptr;
auto const skipTopP = !mDecodingMode.isTopP();
// Compute probabilities either for TopP or if cumLogProbs or outputLogProbs are specified
bool const skipSoftMax = skipTopP && !mOutputLogProbs && !mCumLogProbs;
inputs->curandStates = reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice));
inputs->samplingWorkspace = mSamplingWorkspaceDevice->data();
inputs->probsComputed = !skipSoftMax;
if (!skipSoftMax)
{
invokeAddBiasSoftMax(logits, (T**) nullptr, logits, (T*) (nullptr), endIds, finishedInput, batchSlots,
batchSize, mDecoderDomain.getBatchSize(), /* bw */ 1, mDecoderDomain.getVocabSize(),
mDecoderDomain.getVocabSizePadded(), skipSoftMax, /* batchSlotLogits */ false, getStream());
sync_check_cuda_error();
}
for (auto&& layer : mSamplingLayers)
{
layer->forwardAsync(outputs, baseInputs);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
size_t SamplingLayer<T>::getWorkspaceSize() const noexcept
{
return mSamplingWorkspaceDevice->getSizeInBytes();
}
template class SamplingLayer<float>;
template class SamplingLayer<half>;
} // namespace tensorrt_llm::layers