TensorRT-LLMs/cpp/tensorrt_llm/runtime/tllmRuntime.h
2024-08-13 22:34:33 +08:00

140 lines
4.2 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/layerProfiler.h"
#include "tensorrt_llm/runtime/rawEngine.h"
#include <NvInferRuntime.h>
#include <cstdint>
#include <memory>
#include <set>
#include <string>
#include <vector>
namespace tensorrt_llm::runtime
{
class TllmRuntime
{
public:
using TensorMap = StringPtrMap<ITensor>;
explicit TllmRuntime(RawEngine const& rawEngine, nvinfer1::ILogger* logger, float gpuWeightsPercent = 1.0f,
bool useShapeInference = true);
SizeType32 getNbContexts() const
{
return static_cast<SizeType32>(mContexts.size());
}
nvinfer1::IExecutionContext& getContext(SizeType32 contextIndex) const
{
return *mContexts.at(contextIndex);
}
SizeType32 getNbProfiles() const
{
return static_cast<SizeType32>(mEngine->getNbOptimizationProfiles());
}
/// @brief If multiple TensorRT optimization profiles are built in the engine, this function selects the
/// corresponding profile that is going to be used based on the runtime shape, for now, TensorRT-LLM only split
/// multiple profiles on the num_tokens dimension, hence the profile index is selected based on which profile
/// handles the actual num_tokens
/// @return The index of the selected TensorRT optimization profile
[[nodiscard]] SizeType32 getOptProfileId(int numTokens, std::vector<SizeType32> const& splitPoints) const
{
if (getNbProfiles() == 1)
{
return 0;
}
auto const it = std::lower_bound(splitPoints.begin(), splitPoints.end(), numTokens);
auto const optProfileId = std::distance(splitPoints.begin(), it);
return optProfileId;
}
nvinfer1::IExecutionContext& addContext(std::int32_t profileIndex);
void clearContexts();
void setInputTensors(SizeType32 contextIndex, TensorMap const& tensorMap);
void setOutputTensors(SizeType32 contextIndex, TensorMap& tensorMap);
bool executeContext(SizeType32 contextIndex) const;
CudaStream const& getStream() const;
BufferManager::CudaStreamPtr getStreamPtr()
{
return mStream;
}
nvinfer1::ICudaEngine& getEngine()
{
return *mEngine;
}
nvinfer1::ICudaEngine const& getEngine() const
{
return *mEngine;
}
nvinfer1::IEngineInspector& getEngineInspector()
{
return *mEngineInspector;
}
nvinfer1::IEngineInspector const& getEngineInspector() const
{
return *mEngineInspector;
}
BufferManager& getBufferManager()
{
return mBufferManager;
}
BufferManager const& getBufferManager() const
{
return mBufferManager;
}
void setLayerProfiler();
bool hasLayerProfiler(SizeType32 contextId) const;
std::string getLayerProfileInfo() const;
void reportToProfiler(SizeType32 contextId);
void loadManagedWeights(std::string const& weightsPath);
private:
BufferManager::CudaStreamPtr mStream;
BufferManager mBufferManager;
std::unique_ptr<nvinfer1::IRuntime> mRuntime;
std::unique_ptr<nvinfer1::ICudaEngine> mEngine;
BufferManager::IBufferPtr mEngineBuffer;
std::vector<std::unique_ptr<nvinfer1::IExecutionContext>> mContexts;
std::unique_ptr<ITensor> mDummyTensor;
std::unique_ptr<nvinfer1::IEngineInspector> mEngineInspector;
std::unique_ptr<LayerProfiler> mLayerProfiler;
bool mUseShapeInference;
TensorMap mManagedWeightsMap{};
std::set<SizeType32> mSetWeights;
};
} // namespace tensorrt_llm::runtime