TensorRT-LLMs/cpp/tests/resources/scripts/build_gpt_engines.py
2024-08-13 22:34:33 +08:00

361 lines
13 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import sys
from pathlib import Path
from typing import Optional
from build_engines_utils import init_model_spec_module, run_command, wincopy
init_model_spec_module()
import shutil
import model_spec
import tensorrt_llm.bindings as _tb
def convert_ckpt(model_dir: str,
output_dir: str,
*args,
world_size: int = 1,
dtype: str = 'float16'):
convert_cmd = [
sys.executable, "examples/gpt/convert_checkpoint.py",
f"--model_dir={model_dir}", f"--output_dir={output_dir}",
f"--dtype={dtype}", f"--tp_size={world_size}"
] + list(args)
run_command(convert_cmd)
def build_engine(
checkpoint_dir: str,
engine_dir: str,
*args,
max_input_len: int = 256,
max_seq_len: int = 384,
):
if os.path.exists(engine_dir):
assert False
build_cmd = [
"trtllm-build",
'--log_level=error',
f'--checkpoint_dir={checkpoint_dir}',
f'--output_dir={engine_dir}',
'--max_batch_size=64',
f'--max_input_len={max_input_len}',
f'--max_seq_len={max_seq_len}',
'--max_beam_width=2',
'--builder_opt=0',
'--kv_cache_type=continuous',
]
legacy_args = [
"--gpt_attention_plugin=disable",
"--context_fmha=disable",
"--remove_input_padding=disable",
"--enable_xqa=disable",
]
build_cmd = build_cmd + legacy_args + list(args)
run_command(build_cmd)
def build_engines(model_cache: Optional[str] = None,
world_size: int = 1,
clean: Optional[bool] = False):
# TODO add support of Pipeline parallelism to GPT
tp_size = world_size
pp_size = 1
resources_dir = Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
model_name = 'gpt2'
# Clone or update the model directory without lfs
hf_dir = models_dir / model_name
if hf_dir.exists():
assert hf_dir.is_dir()
run_command(["git", "pull"], cwd=hf_dir)
else:
if platform.system() == "Windows":
url_prefix = ""
else:
url_prefix = "file://"
model_url = url_prefix + str(
Path(model_cache) /
model_name) if model_cache else "https://huggingface.co/gpt2"
run_command([
"git", "clone", model_url, "--single-branch", "--no-local",
model_name
],
cwd=hf_dir.parent,
env={
**os.environ, "GIT_LFS_SKIP_SMUDGE": "1"
})
assert hf_dir.is_dir()
# Download the model file
model_file_name = "pytorch_model.bin"
if model_cache:
if platform.system() == "Windows":
wincopy(source=str(
Path(model_cache) / model_name / model_file_name),
dest=model_file_name,
isdir=False,
cwd=hf_dir)
else:
run_command([
"rsync", "-av",
str(Path(model_cache) / model_name / model_file_name), "."
],
cwd=hf_dir)
else:
run_command(["git", "lfs", "pull", "--include", model_file_name],
cwd=hf_dir)
safetensor_file = hf_dir / "model.safetensors"
has_safetensor = safetensor_file.exists()
if has_safetensor:
safetensor_file.rename(str(safetensor_file) + ".bak")
assert (hf_dir / model_file_name).is_file()
ckpt_dir = models_dir / 'c-model' / model_name
engine_dir = models_dir / 'rt_engine' / model_name
if clean:
target_dir = Path(engine_dir)
print('clean up target folder ', target_dir)
if target_dir.is_dir():
shutil.rmtree(target_dir, ignore_errors=True)
tp_pp_dir = f"tp{tp_size}-pp{pp_size}-gpu"
tp_dir = f"{world_size}-gpu"
print("\nConverting to fp32")
fp32_ckpt_dir = ckpt_dir / 'fp32' / tp_dir
convert_ckpt(str(hf_dir),
str(fp32_ckpt_dir),
world_size=tp_size,
dtype='float32')
input_file = 'input_tokens.npy'
print("\nBuilding fp32 engines")
model_spec_obj = model_spec.ModelSpec(input_file, _tb.DataType.FLOAT)
build_engine(str(fp32_ckpt_dir),
str(engine_dir / model_spec_obj.get_model_path() / tp_pp_dir))
model_spec_obj.use_gpt_plugin()
build_engine(str(fp32_ckpt_dir),
str(engine_dir / model_spec_obj.get_model_path() / tp_pp_dir),
'--gpt_attention_plugin=float32', '--context_fmha=enable')
print("\nConverting to fp16")
fp16_ckpt_dir = ckpt_dir / 'fp16' / tp_dir
convert_ckpt(str(hf_dir),
str(fp16_ckpt_dir),
world_size=tp_size,
dtype='float16')
print("\nBuilding fp16 engines")
model_spec_obj = model_spec.ModelSpec(input_file, _tb.DataType.HALF)
build_engine(str(fp16_ckpt_dir),
str(engine_dir / model_spec_obj.get_model_path() / tp_pp_dir))
model_spec_obj.use_gpt_plugin()
build_engine(str(fp16_ckpt_dir),
str(engine_dir / model_spec_obj.get_model_path() / tp_pp_dir),
'--gpt_attention_plugin=float16')
model_spec_obj.use_packed_input()
build_engine(str(fp16_ckpt_dir),
str(engine_dir / model_spec_obj.get_model_path() / tp_pp_dir),
'--gpt_attention_plugin=float16',
'--remove_input_padding=enable')
# this engine can be use for in-flight batching
ifb_base_args = [
'--gpt_attention_plugin=float16',
'--remove_input_padding=enable',
'--context_fmha=enable',
'--max_num_tokens=10000',
'--use_paged_context_fmha=enable',
]
paged_kv_cache_args = ['--kv_cache_type=paged']
no_kv_cache_args = ['--kv_cache_type=disabled']
def get_ifb_args(kv_cache_type):
if kv_cache_type == model_spec.KVCacheType.DISABLED:
return ifb_base_args + no_kv_cache_args
elif kv_cache_type == model_spec.KVCacheType.PAGED:
return ifb_base_args + paged_kv_cache_args
else:
assert False, f"Unsupported kv_cache_type: {kv_cache_type}"
model_spec_obj = model_spec.ModelSpec(input_file, _tb.DataType.HALF)
model_spec_obj.use_gpt_plugin()
model_spec_obj.set_kv_cache_type(model_spec.KVCacheType.PAGED)
model_spec_obj.use_packed_input()
model_spec_current = model_spec_obj.__copy__()
for kv_cache_type in [
model_spec.KVCacheType.DISABLED, model_spec.KVCacheType.PAGED
]:
model_spec_current.set_kv_cache_type(kv_cache_type)
build_engine(
str(fp16_ckpt_dir),
str(engine_dir / model_spec_current.get_model_path() / tp_pp_dir),
*get_ifb_args(kv_cache_type))
model_spec_current = model_spec_obj.__copy__()
max_draft_tokens = 5
model_spec_current.use_draft_tokens_external_decoding()
model_spec_current.set_draft_tokens(max_draft_tokens)
build_engine(
str(fp16_ckpt_dir),
str(engine_dir / model_spec_current.get_model_path() / tp_pp_dir),
f'--max_draft_len={max_draft_tokens}',
'--speculative_decoding_mode=draft_tokens_external',
*get_ifb_args(model_spec.KVCacheType.PAGED))
model_spec_current = model_spec_obj.__copy__()
model_spec_current.use_multiple_profiles()
build_engine(
str(fp16_ckpt_dir),
str(engine_dir / model_spec_current.get_model_path() / tp_pp_dir),
'--multiple_profiles=enable',
*get_ifb_args(model_spec.KVCacheType.PAGED))
model_spec_current = model_spec_obj.__copy__()
max_input_len = 128
model_spec_current.set_max_input_length(max_input_len)
build_engine(str(fp16_ckpt_dir),
str(engine_dir / model_spec_current.get_model_path() /
tp_pp_dir),
*get_ifb_args(model_spec.KVCacheType.PAGED),
max_input_len=max_input_len)
# Build the target model with return accepted token logits
# Build with '--max_draft_len', '--speculative_decoding_mode' and '--gather_generation_logits'
model_spec_current = model_spec_obj.__copy__()
max_draft_len = 5
model_spec_current.use_draft_tokens_external_decoding()
model_spec_current.set_draft_tokens(max_draft_len)
model_spec_current.gather_logits()
model_spec_current.return_accepted_tokens_logits()
build_engine(
str(fp16_ckpt_dir),
str(engine_dir / model_spec_current.get_model_path() / tp_pp_dir),
f'--max_draft_len={max_draft_len}',
'--speculative_decoding_mode=draft_tokens_external',
'--gather_generation_logits',
*get_ifb_args(model_spec.KVCacheType.PAGED))
# We build almost the same engine twice. But this engine has gather_all_token_logits
# to extract logits from python runtime and uses context FMHA for generation to match draft model executions,
# which uses context FMHA for draft tokens prediction.
# Currently the gather_all_token_logits is not supported with target model of speculative decoding
model_spec_current = model_spec_obj.__copy__()
model_spec_current.gather_logits()
build_engine(
str(fp16_ckpt_dir),
str(engine_dir / model_spec_current.get_model_path() / tp_pp_dir),
'--gather_all_token_logits',
*get_ifb_args(model_spec.KVCacheType.PAGED))
model_spec_current = model_spec_obj.__copy__()
model_spec_current.use_look_ahead_decoding()
max_draft_len = 64
model_spec_current.set_draft_tokens(max_draft_len)
build_engine(
str(fp16_ckpt_dir),
str(engine_dir / model_spec_current.get_model_path() / tp_pp_dir),
f'--max_draft_len={max_draft_len}',
'--speculative_decoding_mode=lookahead_decoding',
*get_ifb_args(model_spec.KVCacheType.PAGED))
# build engine with lora enabled
model_spec_current = model_spec_obj.__copy__()
model_spec_current.use_lora_plugin()
build_engine(
str(fp16_ckpt_dir),
str(engine_dir / model_spec_current.get_model_path() / tp_pp_dir),
"--lora_target_modules=attn_qkv", '--lora_plugin=float16',
*get_ifb_args(model_spec.KVCacheType.PAGED))
if model_cache:
llm_datasets_root = Path(model_cache) / "datasets"
calib_dataset = llm_datasets_root / "cimec/lambada/"
else:
calib_dataset = "lambada"
print("\nConverting to fp16 SQ")
fp16_sq_ckpt_dir = ckpt_dir / 'fp16-sq' / tp_dir
convert_ckpt(str(hf_dir),
str(fp16_sq_ckpt_dir),
"--smoothquant=0.5",
f"--calib_dataset={calib_dataset}",
world_size=tp_size,
dtype='float16')
print("\nBuilding fp16 SQ engines")
model_spec_current = model_spec.ModelSpec(input_file, _tb.DataType.HALF)
model_spec_current.use_gpt_plugin()
model_spec_current.use_packed_input()
model_spec_current.set_quant_method(model_spec.QuantMethod.SMOOTH_QUANT)
for kv_cache_type in [
model_spec.KVCacheType.DISABLED, model_spec.KVCacheType.PAGED
]:
model_spec_current.set_kv_cache_type(kv_cache_type)
build_engine(
str(fp16_sq_ckpt_dir),
str(engine_dir / model_spec_current.get_model_path() / tp_pp_dir),
*get_ifb_args(kv_cache_type))
if has_safetensor:
Path(str(safetensor_file) + ".bak").rename(safetensor_file)
print("Done.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_cache",
type=str,
help="Directory where models are stored")
parser.add_argument('--world_size',
type=int,
default=1,
help='World size, only support tensor parallelism now')
parser.add_argument('--clean',
action='store_true',
default=False,
help='Clean target folders before building engines')
build_engines(**vars(parser.parse_args()))