TensorRT-LLMs/tensorrt_llm/models/chatglm/convert.py
2024-08-13 22:34:33 +08:00

926 lines
37 KiB
Python

import copy
import functools
import os
import time
from collections import defaultdict
from typing import Dict, Optional, Tuple
import numpy as np
import safetensors
import torch
from tqdm import tqdm
from transformers import AutoModel, AutoTokenizer
from tensorrt_llm._utils import pad_vocab_size
from tensorrt_llm.models import ChatGLMConfig
from tensorrt_llm.models.convert_utils import load_calib_dataset
from tensorrt_llm.quantization import QuantAlgo
from .config import GLM_ARCH1_VERSIONS, GLM_ARCH2_VERSIONS
def split(weight: torch.Tensor,
tp_size: int,
rank: int = 0,
dim: int = 0) -> torch.Tensor:
if tp_size == 1:
return weight
elif weight.ndim == 1:
return torch.chunk(weight, tp_size)[rank].contiguous()
else:
return torch.chunk(weight, tp_size, dim=dim)[rank].contiguous()
def tile_kv_weight_bias(v: torch.Tensor, kv_num_head: int, tp_size: int):
head_size = v.shape[0] // kv_num_head
reps = tp_size // kv_num_head
if v.ndim == 1:
v = v.reshape(kv_num_head, head_size)[:, None, :]
v = v.expand(kv_num_head, reps, head_size).reshape(-1).clone()
else:
hidden_size = v.shape[1]
v = v.reshape(kv_num_head, head_size, hidden_size)[:, None, :, :]
v = v.expand(kv_num_head, reps, head_size,
hidden_size).reshape(-1, hidden_size).clone()
return v
def split_qkv(v: torch.Tensor, tp_size: int, rank: int, hidden_size: int,
num_heads: int, num_kv_heads: int):
head_size = hidden_size // num_heads
if tp_size == 1:
return v
assert v.shape[0] == hidden_size + head_size * num_kv_heads * 2
query = v[:hidden_size]
key = v[hidden_size:hidden_size + head_size * num_kv_heads]
value = v[hidden_size + head_size * num_kv_heads:hidden_size +
head_size * num_kv_heads * 2]
if num_kv_heads < tp_size:
key = tile_kv_weight_bias(key, num_kv_heads, tp_size)
value = tile_kv_weight_bias(value, num_kv_heads, tp_size)
assert (key.shape[0] % (tp_size * head_size)) == 0
assert (value.shape[0] % (tp_size * head_size)) == 0
q_tmp = torch.chunk(query, tp_size, dim=0)[rank]
k_tmp = torch.chunk(key, tp_size, dim=0)[rank]
v_tmp = torch.chunk(value, tp_size, dim=0)[rank]
return torch.concatenate([q_tmp, k_tmp, v_tmp], dim=0).contiguous()
def split_embedding(
param: torch.Tensor,
tp_size: int,
tp_rank: int,
use_parallel_embedding: bool = False,
sharding_dim: int = 0,
) -> torch.Tensor:
if param is None:
return None
if not use_parallel_embedding:
return param
vocab_size, hidden_size = param.size()
if sharding_dim == 0:
if vocab_size % tp_size != 0:
vocab_size_padded = pad_vocab_size(vocab_size, tp_size)
pad_width = vocab_size_padded - vocab_size
param = torch.nn.functional.pad(param, (0, 0, 0, pad_width),
value=0)
else:
assert hidden_size % tp_size == 0
return split(param, tp_size, tp_rank, dim=sharding_dim)
def get_weight(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.weight' not in params:
return None
return params[f'{prefix}.weight'].to(dtype).detach().cpu()
def get_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.bias' not in params:
return None
return params[f'{prefix}.bias'].to(dtype).detach().cpu()
def get_weight_and_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> Tuple[torch.Tensor]:
return get_weight(params, prefix, dtype), get_bias(params, prefix, dtype)
def swap_and_split_mlp(weight: torch.Tensor,
tp_size: int,
tp_rank: int,
dim: int = 0) -> torch.Tensor:
"""Swap the positions of gate and fc weights, and split weights for tensor parallel.
"""
gate_weight, fc_weight = torch.chunk(weight, 2, dim=dim)
fc_w = split(fc_weight, tp_size, tp_rank, dim=dim)
gate_w = split(gate_weight, tp_size, tp_rank, dim=dim)
return torch.cat([fc_w, gate_w], dim=dim).contiguous()
def get_tllm_linear_weight(
weight: torch.Tensor,
prefix: str,
bias: Optional[torch.Tensor] = None,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8
) -> Dict[str, torch.Tensor]:
results = {}
if use_weight_only:
v = weight.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[f'{prefix}.weight'] = processed_torch_weights
results[f'{prefix}.per_channel_scale'] = torch_weight_scales
else:
results[f'{prefix}.weight'] = weight.contiguous()
if bias is not None:
results[f'{prefix}.bias'] = bias
return results
@torch.no_grad()
def apply_smoothing(
scales,
gemm_weights,
norm_weights=None,
norm_bias=None,
dtype=torch.float32,
norm_1p=False,
):
if not isinstance(gemm_weights, list):
gemm_weights = [gemm_weights]
if norm_weights is not None:
assert norm_weights.numel() == scales.numel()
norm_weights.div_(scales).to(dtype)
if norm_bias is not None:
assert norm_bias.numel() == scales.numel()
norm_bias.div_(scales).to(dtype)
if norm_1p:
norm_weights += (1 / scales) - 1
for gemm in gemm_weights:
gemm.mul_(scales.view(1, -1)).to(dtype)
@torch.no_grad()
def smooth_gemm(
gemm_weights,
act_scales,
norm_weights=None,
norm_bias=None,
alpha=0.5,
weight_scales=None,
):
if not isinstance(gemm_weights, list):
gemm_weights = [gemm_weights]
orig_dtype = gemm_weights[0].dtype
for gemm in gemm_weights:
# gemm_weights are expected to be transposed
assert gemm.shape[1] == act_scales.numel()
if weight_scales is None:
weight_scales = torch.cat(
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
dim=0)
weight_scales = weight_scales.max(dim=0)[0]
weight_scales.to(float).clamp(min=1e-5)
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
apply_smoothing(scales, gemm_weights, norm_weights, norm_bias, orig_dtype)
return scales
@torch.no_grad()
def capture_activation_range(
model,
tokenizer,
dataset,
num_samples=64,
seq_len=512,
):
model.eval()
device = next(model.parameters()).device
scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
def stat_tensor(name, tensor, key):
tensor = tensor.view(-1, tensor.shape[-1]).detach()
comming_max = tensor.abs().max(dim=0)[0].float()
if scales[name][key] is None:
scales[name][key] = comming_max
else:
scales[name][key] = torch.max(scales[name][key], comming_max)
def stat_input_hook(m, x, y, name):
if isinstance(x, tuple):
x = x[0]
stat_tensor(name, x, "x")
stat_tensor(name, y, "y")
# TODO: we don't need to do it every forward because inference does not change weight
if scales[name]["w"] is None:
scales[name]["w"] = m.weight.abs().clip(1e-8, None).max(dim=1)[0]
hooks = []
for name, m in model.named_modules():
if isinstance(m, torch.nn.Linear):
hooks.append(
m.register_forward_hook(
functools.partial(stat_input_hook, name=name)))
for i in tqdm(range(num_samples), desc="Calibration"):
input_ids = tokenizer(
dataset[i],
return_tensors="pt",
max_length=seq_len,
truncation=True,
)
model(input_ids.input_ids.to(device))
for h in hooks:
h.remove()
return scales
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=True):
"""
This function has two purposes:
- compute quantized weights, scaled either per-tensor or per-column
- compute scaling factors
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
Here is the list of what we need (T means per-tensor, C per-column):
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
to quant range (int8) (used for CUBLAS) (T, C)
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
but then the model would change depending on the number of GPUs used.
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
"""
# For ChatGLM2/3-6B models (num_kv_head == 2), we regard multi_query_mode == True to reuse code from gpt and baichuan examples.
if act_range["w"].dtype == torch.bfloat16:
act_range["w"] = act_range["w"].to(torch.float32)
def to_np(tensor):
return tensor.cpu().numpy().astype(np.float32)
if is_qkv and multi_query_mode:
hidden_dim, local_dim = weights.shape
kv_dim = (local_dim - hidden_dim) // 2
scale_w_q = act_range["w"][0:hidden_dim]
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
scale_w_v = act_range["w"][-kv_dim:]
scale_w_qkv_t = torch.concat([
scale_w_q.max(dim=0, keepdim=True)[0],
scale_w_k.max(dim=0, keepdim=True)[0],
scale_w_v.max(dim=0, keepdim=True)[0]
])
scale_w_orig_quant_t = 127. / to_np(scale_w_qkv_t)
scale_w_orig_quant_c = 127. / to_np(act_range["w"])
elif is_qkv and not multi_query_mode:
scale_w_orig_quant_t = 127. / to_np(act_range["w"].reshape(3, -1).max(
dim=-1, keepdims=True)[0])
scale_w_orig_quant_c = 127. / to_np(act_range["w"].reshape(3, -1))
else:
scale_w_orig_quant_t = 127. / to_np(act_range["w"].max())
scale_w_orig_quant_c = 127. / to_np(act_range["w"])
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
# compute the rest of needed scaling factors
act_range_x_max = act_range["x"].max().to(torch.float32).item()
act_range_y_max = act_range["y"].max().to(torch.float32).item()
scale_x_orig_quant_t = np.array(127. / act_range_x_max).astype(np.float32)
scale_y_orig_quant_t = np.array(127. / act_range_y_max).astype(np.float32)
scale_y_quant_orig_t = np.array(act_range_y_max / 127.).astype(np.float32)
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_t)
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_c)
if is_qkv and not multi_query_mode:
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
scale_w_orig_quant_c.shape)
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
scale_w_orig_quant_c.shape)
if is_qkv and multi_query_mode:
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
scale_w_q.shape)
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
scale_w_k.shape)
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
scale_w_v.shape)
scale_y_accum_quant_t = np.concatenate(
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
scale_w_quant_orig_t = np.concatenate([
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
])
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
if is_qkv and multi_query_mode:
scale_w_orig_quant_t_expand = np.ones([weights.shape[-1]])
scale_w_orig_quant_t_expand[:hidden_dim] = scale_w_orig_quant_t[0]
scale_w_orig_quant_t_expand[hidden_dim:hidden_dim +
kv_dim] = scale_w_orig_quant_t[1]
scale_w_orig_quant_t_expand[-kv_dim:] = scale_w_orig_quant_t[2]
weight_int8 = to_i8(weights * scale_w_orig_quant_t_expand)
else:
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
return {
"weight.int8": weight_int8,
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
}
@torch.no_grad()
def smooth_chatglm_model(
model,
act_range,
alpha,
model_smoother,
):
for name, module in model.named_modules():
if not module._get_name() == "GLMBlock":
continue
# QKV multiplication weight
layer_name = name + '.self_attention.query_key_value'
print(f'Smoothing module: {layer_name}')
weight = module.self_attention.query_key_value.weight
smoother = smooth_gemm(
weight,
act_range[layer_name]["x"],
module.input_layernorm.weight,
None,
alpha,
)
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
# Dense multiplication weight
layer_name = name + ".self_attention.dense"
print(f'Smoothing module: {layer_name}')
weight = module.self_attention.dense.weight
smoother = smooth_gemm(
weight,
act_range[layer_name]["x"],
None,
None,
alpha,
)
model_smoother[layer_name] = smoother.float()
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
# Multilayer perceptron h -> 4h weight
layer_name = name + ".mlp.dense_h_to_4h"
print(f'Smoothing module: {layer_name}')
weight = module.mlp.dense_h_to_4h.weight
smoother = smooth_gemm(
weight,
act_range[layer_name]["x"],
module.post_attention_layernorm.weight,
None,
alpha,
)
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
# Multilayer perceptron 4h -> h weight
layer_name = name + ".mlp.dense_4h_to_h"
print(f'Smoothing module: {layer_name}')
weight = module.mlp.dense_4h_to_h.weight
smoother = smooth_gemm(
weight,
act_range[layer_name]["x"],
None,
None,
alpha,
)
model_smoother[layer_name] = smoother.float()
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
def get_tllm_linear_sq_weight(vals,
prefix,
shape,
is_qkv=False,
per_token=False,
per_channel=False,
last_prefix=None,
smoother_value=None,
smoother_shape=None):
results = {}
col_shape = shape if (is_qkv or per_channel) else [1, 1]
if per_token:
if per_channel:
original_weights = np.array(vals["weight.int8.col"])
else:
original_weights = np.array(vals["weight.int8"])
cur_weights = original_weights
if is_qkv:
hidden_dim = cur_weights.shape[0]
cur_weights = cur_weights.reshape(hidden_dim, -1)
results[prefix +
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
if smoother_value is None:
results[last_prefix] = torch.from_numpy(
np.array([1.0], dtype=np.float16))
if per_channel:
cur_per_channel_value = vals["scale_w_quant_orig.col"]
else:
cur_per_channel_value = vals["scale_w_quant_orig"]
results[prefix + 'per_channel_scale'] = torch.from_numpy(
np.array(cur_per_channel_value,
dtype=np.float32).reshape(col_shape)).contiguous()
else:
if per_channel:
original_weights = np.array(vals["weight.int8.col"])
else:
original_weights = np.array(vals["weight.int8"])
cur_weights = original_weights
if is_qkv:
hidden_dim = cur_weights.shape[0]
cur_weights = cur_weights.reshape(hidden_dim, -1)
results[prefix +
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
if per_channel:
cur_per_channel_value = vals["scale_y_accum_quant.col"]
else:
cur_per_channel_value = vals["scale_y_accum_quant"]
results[prefix + 'per_channel_scale'] = torch.from_numpy(
np.array([cur_per_channel_value],
dtype=np.float32).reshape(col_shape)).contiguous()
results[last_prefix] = torch.from_numpy(
np.array([vals['scale_x_orig_quant']],
dtype=np.float32)).contiguous()
results[prefix + 'act_scale'] = torch.from_numpy(
np.array([[vals["scale_y_quant_orig"]]],
dtype=np.float32)).contiguous()
if smoother_value is not None:
results[prefix + 'smoother'] = smoother_value.reshape(
smoother_shape).contiguous().to(torch.float32)
return results
def smooth_quant(hf_model: AutoModel, tokenizer: AutoTokenizer, dataset,
smoothquant: float):
act_range = {}
# smoother for query_key_value.dense and mlp.proj
model_smoother = {}
act_range = capture_activation_range(hf_model,
tokenizer,
dataset,
num_samples=64)
if smoothquant is not None:
smooth_chatglm_model(hf_model, act_range, smoothquant, model_smoother)
return act_range, model_smoother
def load_weights_from_hf_model(hf_model: AutoModel,
config: ChatGLMConfig,
act_range: Optional[dict] = None,
smoother: Optional[dict] = None):
weights = {}
tik = time.time()
model_params = dict(hf_model.named_parameters())
dtype = getattr(torch, config.dtype)
num_attention_heads = config.num_attention_heads
hidden_size = config.hidden_size
num_kv_heads = config.num_key_value_heads
num_hidden_layers = config.num_hidden_layers
chatglm_version = config.chatglm_version
mapping = config.mapping
use_parallel_embedding = config.use_parallel_embedding
sharding_dim = config.embedding_sharding_dim
share_embedding_table = config.share_embedding_table
quant_algo = config.quantization.quant_algo
use_weight_only = quant_algo in [QuantAlgo.W8A16, QuantAlgo.W4A16]
use_smooth_quant = config.quantization.use_plugin_sq
per_channel = use_smooth_quant and 'PER_CHANNEL' in quant_algo
per_token = use_smooth_quant and 'PER_TOKEN' in quant_algo
int8_kv_cache = config.quantization.kv_cache_quant_algo == QuantAlgo.INT8
if use_weight_only:
if quant_algo == QuantAlgo.W8A16:
plugin_weight_only_quant_type = torch.int8
elif quant_algo == QuantAlgo.W4A16:
plugin_weight_only_quant_type = torch.quint4x2
else:
plugin_weight_only_quant_type = None
layers_range = mapping.pp_layers(num_hidden_layers)
for l in layers_range:
if chatglm_version in GLM_ARCH1_VERSIONS:
prefix = f'transformer.layers.{l}'
elif chatglm_version in GLM_ARCH2_VERSIONS:
prefix = f'transformer.encoder.layers.{l}'
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
# Attention QKV
attention_attr_name = ''
if chatglm_version in GLM_ARCH1_VERSIONS:
attention_attr_name = 'attention'
elif chatglm_version in GLM_ARCH2_VERSIONS:
attention_attr_name = 'self_attention'
qkv_weight, qkv_bias = get_weight_and_bias(
model_params, f'{prefix}.{attention_attr_name}.query_key_value',
dtype)
if use_smooth_quant:
qkv_act_range = act_range.get(
f'{prefix}.{attention_attr_name}.query_key_value')
qkv_vals_int8 = generate_int8(qkv_weight.t().numpy(),
qkv_act_range,
is_qkv=True,
multi_query_mode=True)
weights.update(
get_tllm_linear_sq_weight(
vals=qkv_vals_int8,
prefix=f'{tllm_prex}.attention.qkv.',
shape=[1, qkv_weight.size(0)],
is_qkv=True,
per_token=per_token,
per_channel=per_channel,
last_prefix=f'{tllm_prex}.input_layernorm.scale_to_int',
smoother_value=None,
smoother_shape=None))
if qkv_bias is not None:
qkv_b = split_qkv(qkv_bias,
mapping.tp_size,
mapping.tp_rank,
hidden_size,
num_attention_heads,
num_kv_heads=num_kv_heads)
weights[f'{tllm_prex}.attention.qkv.bias'] = qkv_b
else:
qkv_w = split_qkv(qkv_weight,
mapping.tp_size,
mapping.tp_rank,
hidden_size,
num_attention_heads,
num_kv_heads=num_kv_heads)
if qkv_bias is None:
qkv_b = None
else:
qkv_b = split_qkv(qkv_bias,
mapping.tp_size,
mapping.tp_rank,
hidden_size,
num_attention_heads,
num_kv_heads=num_kv_heads)
weights.update(
get_tllm_linear_weight(qkv_w, f'{tllm_prex}.attention.qkv',
qkv_b, use_weight_only,
plugin_weight_only_quant_type))
if int8_kv_cache:
qkv_act_range = act_range.get(
f'{prefix}.{attention_attr_name}.query_key_value')
qkv_vals_int8 = generate_int8(qkv_weight.t().numpy(),
qkv_act_range,
is_qkv=True,
multi_query_mode=True)
weights[
f'{tllm_prex}.attention.kv_cache_scaling_factor'] = torch.from_numpy(
np.array([qkv_vals_int8['scale_y_quant_orig']],
dtype=np.float32)).contiguous()
# Attention dense
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
model_params, f'{prefix}.{attention_attr_name}.dense', dtype)
if use_smooth_quant:
dense_act_range = act_range.get(
f'{prefix}.{attention_attr_name}.dense')
dense_smoother = smoother.get(
f'{prefix}.{attention_attr_name}.dense')
dense_vals_int8 = generate_int8(attn_dense_weight.t().numpy(),
dense_act_range,
is_qkv=False,
multi_query_mode=True)
weights.update(
get_tllm_linear_sq_weight(
vals=dense_vals_int8,
prefix=f'{tllm_prex}.attention.dense.',
shape=[1, hidden_size],
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=
f'{tllm_prex}.attention.quantization_scaling_factor',
smoother_value=dense_smoother,
smoother_shape=[1, hidden_size]))
if attn_dense_bias is not None:
weights[f'{tllm_prex}.attention.dense.bias'] = attn_dense_bias
else:
attn_dense_w = split(attn_dense_weight,
mapping.tp_size,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_linear_weight(attn_dense_w,
f'{tllm_prex}.attention.dense',
attn_dense_bias, use_weight_only,
plugin_weight_only_quant_type))
# MLP FC
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
model_params, f'{prefix}.mlp.dense_h_to_4h', dtype)
if use_smooth_quant:
fc_act_range = act_range.get(f'{prefix}.mlp.dense_h_to_4h')
fc_vals_int8 = generate_int8(mlp_fc_weight.t().numpy(),
fc_act_range,
is_qkv=False,
multi_query_mode=True)
cur_weights = get_tllm_linear_sq_weight(
vals=fc_vals_int8,
prefix=f'{tllm_prex}.mlp.fc.',
shape=[1, mlp_fc_weight.size(0)],
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=f'{tllm_prex}.post_layernorm.scale_to_int',
smoother_value=None,
smoother_shape=None,
)
cur_weights[f'{tllm_prex}.mlp.fc.weight'] = swap_and_split_mlp(
cur_weights[f'{tllm_prex}.mlp.fc.weight'],
mapping.tp_size,
mapping.tp_rank,
dim=0,
)
if per_channel:
cur_weights[
f'{tllm_prex}.mlp.fc.per_channel_scale'] = swap_and_split_mlp(
cur_weights[f'{tllm_prex}.mlp.fc.per_channel_scale'],
mapping.tp_size,
mapping.tp_rank,
dim=1,
)
weights.update(cur_weights)
if chatglm_version in GLM_ARCH1_VERSIONS:
if mlp_fc_bias is not None:
mlp_fc_b = split(mlp_fc_bias,
mapping.tp_size,
mapping.tp_rank,
dim=0)
weights[f'{tllm_prex}.mlp.fc.bias'] = mlp_fc_b
elif chatglm_version in GLM_ARCH2_VERSIONS:
if mlp_fc_bias is not None:
mlp_fc_b = swap_and_split_mlp(mlp_fc_bias, mapping.tp_size,
mapping.tp_rank)
weights[f'{tllm_prex}.mlp.fc.bias'] = mlp_fc_b
else:
if chatglm_version in GLM_ARCH1_VERSIONS:
mlp_fc_w = split(mlp_fc_weight,
mapping.tp_size,
mapping.tp_rank,
dim=0)
if mlp_fc_bias is None:
mlp_fc_b = None
else:
mlp_fc_b = split(mlp_fc_bias,
mapping.tp_size,
mapping.tp_rank,
dim=0)
elif chatglm_version in GLM_ARCH2_VERSIONS:
mlp_fc_w = swap_and_split_mlp(mlp_fc_weight, mapping.tp_size,
mapping.tp_rank)
if mlp_fc_bias is None:
mlp_fc_b = None
else:
mlp_fc_b = swap_and_split_mlp(mlp_fc_bias, mapping.tp_size,
mapping.tp_rank)
weights.update(
get_tllm_linear_weight(mlp_fc_w, f'{tllm_prex}.mlp.fc',
mlp_fc_b, use_weight_only,
plugin_weight_only_quant_type))
# MLP Proj
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
model_params, f'{prefix}.mlp.dense_4h_to_h', dtype)
if use_smooth_quant:
proj_act_range = act_range.get(f'{prefix}.mlp.dense_4h_to_h')
proj_smoother = smoother.get(f'{prefix}.mlp.dense_4h_to_h')
proj_vals_int8 = generate_int8(mlp_proj_weight.t().numpy(),
proj_act_range,
is_qkv=False,
multi_query_mode=True)
weights.update(
get_tllm_linear_sq_weight(
vals=proj_vals_int8,
prefix=f'{tllm_prex}.mlp.proj.',
shape=[1, hidden_size],
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=f'{tllm_prex}.mlp.quantization_scaling_factor',
smoother_value=proj_smoother,
smoother_shape=[1, config.intermediate_size]))
if mlp_proj_bias is not None:
weights[f'{tllm_prex}.mlp.proj.bias'] = mlp_proj_bias
else:
mlp_proj_w = split(mlp_proj_weight,
mapping.tp_size,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_linear_weight(mlp_proj_w, f'{tllm_prex}.mlp.proj',
mlp_proj_bias, use_weight_only,
plugin_weight_only_quant_type))
input_ln_weight, input_ln_bias = get_weight_and_bias(
model_params, f'{prefix}.input_layernorm', dtype)
weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight
if input_ln_bias is not None:
weights[f'{tllm_prex}.input_layernorm.bias'] = input_ln_bias
post_ln_weight, post_ln_bias = get_weight_and_bias(
model_params, f'{prefix}.post_attention_layernorm', dtype)
weights[f'{tllm_prex}.post_layernorm.weight'] = post_ln_weight
if post_ln_bias is not None:
weights[f'{tllm_prex}.post_layernorm.bias'] = post_ln_bias
if mapping.is_first_pp_rank():
if chatglm_version == 'glm':
embed_w = get_weight(model_params, 'word_embeddings', dtype)
pos_embed_w = get_weight(model_params,
'transformer.position_embeddings', dtype)
weights['transformer.position_embedding.weight'] = split_embedding(
pos_embed_w,
tp_size=mapping.tp_size,
tp_rank=mapping.tp_rank,
use_parallel_embedding=use_parallel_embedding,
sharding_dim=sharding_dim)
block_embed_w = get_weight(model_params,
'transformer.block_position_embeddings',
dtype)
weights['transformer.block_embedding.weight'] = split_embedding(
block_embed_w,
tp_size=mapping.tp_size,
tp_rank=mapping.tp_rank,
use_parallel_embedding=use_parallel_embedding,
sharding_dim=sharding_dim)
elif chatglm_version == 'chatglm':
embed_w = get_weight(model_params, 'transformer.word_embeddings',
dtype)
elif chatglm_version in GLM_ARCH2_VERSIONS:
embed_w = get_weight(model_params,
'transformer.embedding.word_embeddings', dtype)
weights['transformer.vocab_embedding.weight'] = split_embedding(
embed_w,
tp_size=mapping.tp_size,
tp_rank=mapping.tp_rank,
use_parallel_embedding=use_parallel_embedding,
sharding_dim=sharding_dim)
if mapping.is_last_pp_rank():
if chatglm_version == 'glm':
lm_head_weight = get_weight(model_params, 'word_embeddings',
dtype).clone()
elif chatglm_version == 'chatglm':
lm_head_weight = get_weight(model_params,
'transformer.word_embeddings',
dtype).clone()
elif chatglm_version in GLM_ARCH2_VERSIONS:
lm_head_weight = get_weight(model_params,
'transformer.output_layer', dtype)
assert not share_embedding_table
if not share_embedding_table:
weights['lm_head.weight'] = split(lm_head_weight,
mapping.tp_size,
mapping.tp_rank,
dim=0)
if chatglm_version in GLM_ARCH1_VERSIONS:
ln_f_w, ln_f_b = get_weight_and_bias(model_params,
'transformer.final_layernorm',
dtype)
elif chatglm_version in GLM_ARCH2_VERSIONS:
ln_f_w, ln_f_b = get_weight_and_bias(
model_params, 'transformer.encoder.final_layernorm', dtype)
weights['transformer.ln_f.weight'] = ln_f_w
if ln_f_b is not None:
weights['transformer.ln_f.bias'] = ln_f_b
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Weights loaded. Total time: {t}')
return weights
def quantize(hf_model_dir: str,
output_dir: str,
config: ChatGLMConfig,
calib_dataset: str = 'cnn_dailymail',
device: str = 'auto'):
'''
Quantize the save the model as TRT-LLM checkpoint to output_dir
'''
os.makedirs(output_dir, exist_ok=True)
config.to_json_file(os.path.join(output_dir, 'config.json'))
mapping = config.mapping
assert mapping.rank == 0, "quantize should be called at rank 0 only"
quant_config = config.quantization
use_smooth_quant = quant_config.use_plugin_sq
int8_kv_cache = quant_config.kv_cache_quant_algo == QuantAlgo.INT8
assert use_smooth_quant or int8_kv_cache, "Call from_hugging_face when there is no quantization"
if use_smooth_quant:
assert quant_config.smoothquant_val is not None, "A smooth value must be specified when using smooth quant"
assert hf_model_dir is not None
## only load and call smooth quant routine once for all ranks
if config.chatglm_version == 'glm':
device_map = 'cuda' if device != "cpu" else 'cpu'
else:
device_map = 'auto' if device != "cpu" else 'cpu'
hf_model = AutoModel.from_pretrained(
hf_model_dir,
trust_remote_code=True,
torch_dtype='auto' if config.chatglm_version != 'glm' else getattr(
torch, config.dtype),
device_map=device_map)
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
"TOKENIZERS_PARALLELISM", "false")
tokenizer = AutoTokenizer.from_pretrained(
hf_model_dir,
trust_remote_code=True,
)
dataset = load_calib_dataset(calib_dataset)
act_range, smoother = smooth_quant(hf_model, tokenizer, dataset,
quant_config.smoothquant_val)
for rank in range(mapping.world_size):
# To avoid changing the mapping arg in-place, also the given mapping from caller is rank agnostic, since quantize is called from only one rank
config = copy.deepcopy(config)
config.set_rank(rank)
weights = load_weights_from_hf_model(
hf_model,
config=config,
act_range=act_range,
smoother=smoother,
)
safetensors.torch.save_file(
weights, os.path.join(output_dir, f'rank{rank}.safetensors'))
del weights