mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
1096 lines
48 KiB
Python
1096 lines
48 KiB
Python
import json
|
|
import os
|
|
import sys
|
|
from io import BytesIO
|
|
|
|
import requests
|
|
|
|
# isort: off
|
|
import torch
|
|
import numpy as np
|
|
import tensorrt as trt
|
|
# isort: on
|
|
from huggingface_hub import hf_hub_download
|
|
from PIL import Image
|
|
from safetensors import safe_open
|
|
from transformers import AutoConfig, AutoProcessor, AutoTokenizer
|
|
|
|
from .. import profiler
|
|
from .._utils import (mpi_rank, str_dtype_to_torch, str_dtype_to_trt,
|
|
trt_dtype_to_torch)
|
|
from ..logger import logger
|
|
from .enc_dec_model_runner import EncDecModelRunner
|
|
from .model_runner import ModelRunner
|
|
from .session import Session, TensorInfo
|
|
|
|
|
|
class LlavaNextUtils:
|
|
# https://github.com/haotian-liu/LLaVA/blob/main/llava/mm_utils.py
|
|
|
|
@staticmethod
|
|
def select_best_resolution(original_size, possible_resolutions):
|
|
"""
|
|
Selects the best resolution from a list of possible resolutions based on the original size.
|
|
|
|
Args:
|
|
original_size (tuple): The original size of the image in the format (width, height).
|
|
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
|
|
|
Returns:
|
|
tuple: The best fit resolution in the format (width, height).
|
|
"""
|
|
original_width, original_height = original_size
|
|
best_fit = None
|
|
max_effective_resolution = 0
|
|
min_wasted_resolution = float('inf')
|
|
|
|
for width, height in possible_resolutions:
|
|
scale = min(width / original_width, height / original_height)
|
|
downscaled_width, downscaled_height = int(
|
|
original_width * scale), int(original_height * scale)
|
|
effective_resolution = min(downscaled_width * downscaled_height,
|
|
original_width * original_height)
|
|
wasted_resolution = (width * height) - effective_resolution
|
|
|
|
if effective_resolution > max_effective_resolution or (
|
|
effective_resolution == max_effective_resolution
|
|
and wasted_resolution < min_wasted_resolution):
|
|
max_effective_resolution = effective_resolution
|
|
min_wasted_resolution = wasted_resolution
|
|
best_fit = (width, height)
|
|
|
|
return best_fit
|
|
|
|
@staticmethod
|
|
def get_anyres_image_grid_shape(image_size, patch_size):
|
|
"""
|
|
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
|
|
|
Args:
|
|
image_size (tuple): The size of the input image in the format (width, height).
|
|
patch_size (int): The size of each image patch.
|
|
|
|
Returns:
|
|
tuple: The shape of the image patch grid in the format (width, height).
|
|
"""
|
|
IMAGE_GRID_PINPOINTS = [[336, 672], [672, 336], [672, 672], [1008, 336],
|
|
[336, 1008]]
|
|
width, height = LlavaNextUtils.select_best_resolution(
|
|
image_size, IMAGE_GRID_PINPOINTS)
|
|
return width // patch_size, height // patch_size
|
|
|
|
@staticmethod
|
|
def unpad_image(tensor, original_size):
|
|
"""
|
|
Unpads a PyTorch tensor of a padded and resized image.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
|
|
original_size (tuple): The original size of the image (width, height).
|
|
|
|
Returns:
|
|
torch.Tensor: The unpadded image tensor.
|
|
"""
|
|
original_width, original_height = original_size
|
|
current_height, current_width = tensor.shape[1:]
|
|
|
|
original_aspect_ratio = original_width / original_height
|
|
current_aspect_ratio = current_width / current_height
|
|
|
|
if original_aspect_ratio > current_aspect_ratio:
|
|
scale_factor = current_width / original_width
|
|
new_height = int(original_height * scale_factor)
|
|
padding = (current_height - new_height) // 2
|
|
unpadded_tensor = tensor[:, padding:current_height - padding, :]
|
|
else:
|
|
scale_factor = current_height / original_height
|
|
new_width = int(original_width * scale_factor)
|
|
padding = (current_width - new_width) // 2
|
|
unpadded_tensor = tensor[:, :, padding:current_width - padding]
|
|
|
|
return unpadded_tensor
|
|
|
|
@staticmethod
|
|
def rearrange_image_features(image_feature, image_newline, image_size):
|
|
"""
|
|
Combine PyTorch feature grids from image patches.
|
|
|
|
Args:
|
|
image_feature (torch.Tensor): The feature grids, assumed to be in NxCxHxW format.
|
|
image_newline (torch.Tensor): The newline embedding.
|
|
image_size (tuple): Size of the original image (width, height).
|
|
"""
|
|
CLIP_IMAGE_SIZE = 336
|
|
CLIP_PATCH_SIZE = 14
|
|
NUM_PATCHES_PER_SIDE = CLIP_IMAGE_SIZE // CLIP_PATCH_SIZE
|
|
if image_feature.shape[0] == 1:
|
|
return torch.cat((image_feature, image_newline[None]), dim=0)
|
|
|
|
base_image_feature = image_feature[0]
|
|
image_feature = image_feature[1:]
|
|
height = width = NUM_PATCHES_PER_SIDE
|
|
assert height * width == base_image_feature.shape[0]
|
|
|
|
num_patch_width, num_patch_height = LlavaNextUtils.get_anyres_image_grid_shape(
|
|
image_size, CLIP_IMAGE_SIZE)
|
|
image_feature = image_feature.view(num_patch_height, num_patch_width,
|
|
height, width, -1)
|
|
|
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
|
image_feature = LlavaNextUtils.unpad_image(image_feature, image_size)
|
|
image_feature = torch.cat(
|
|
(image_feature, image_newline[:, None, None].expand(
|
|
*image_feature.shape[:-1], 1)),
|
|
dim=-1)
|
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
|
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
|
return image_feature
|
|
|
|
|
|
class MultimodalModelRunner:
|
|
|
|
def __init__(self, args):
|
|
self.args = args
|
|
|
|
self.runtime_rank = mpi_rank()
|
|
device_id = self.runtime_rank % torch.cuda.device_count()
|
|
torch.cuda.set_device(device_id)
|
|
self.device = "cuda:%d" % (device_id)
|
|
|
|
self.stream = torch.cuda.Stream(torch.cuda.current_device())
|
|
torch.cuda.set_stream(self.stream)
|
|
|
|
# parse model type from visual engine config
|
|
with open(os.path.join(self.args.visual_engine_dir, "config.json"),
|
|
"r") as f:
|
|
config = json.load(f)
|
|
self.model_type = config['builder_config']['model_type']
|
|
self.vision_precision = config['builder_config']['precision']
|
|
if self.model_type == 'pix2struct':
|
|
self.vision_precision = 'float16'
|
|
self.decoder_llm = not (
|
|
't5' in self.model_type
|
|
or self.model_type in ['nougat', 'pix2struct']
|
|
) # BLIP2-T5, pix2struct and Nougat are using encoder-decoder models as LLMs
|
|
|
|
if self.model_type == 'video-neva':
|
|
self.num_frames = config['builder_config'].get('num_frames', None)
|
|
if self.model_type == "llava_next":
|
|
self.llm_name = AutoConfig.from_pretrained(
|
|
self.args.hf_model_dir).text_config._name_or_path
|
|
|
|
self.init_image_encoder()
|
|
self.init_tokenizer()
|
|
self.init_llm()
|
|
|
|
def init_tokenizer(self):
|
|
if self.model_type == 'nougat':
|
|
from transformers import NougatTokenizerFast
|
|
self.tokenizer = NougatTokenizerFast.from_pretrained(
|
|
self.args.hf_model_dir)
|
|
elif self.model_type == 'neva' or self.model_type == 'video-neva':
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
sp = SentencePieceProcessor(
|
|
os.path.join(self.args.hf_model_dir, 'tokenizer.model'))
|
|
|
|
class return_obj:
|
|
|
|
def __init__(self, input_ids):
|
|
self.input_ids = input_ids
|
|
|
|
def __getitem__(self, name):
|
|
if name in "input_ids":
|
|
return self.input_ids
|
|
else:
|
|
raise AttributeError(
|
|
f"'return_obj' has no item '{name}'")
|
|
|
|
# sentencepiece does not follow the same interface as HF
|
|
class HFTokenizerInterface():
|
|
|
|
def encode(self, x, return_tensors=None, **kwargs):
|
|
out = sp.encode(x)
|
|
if return_tensors == "pt":
|
|
out = torch.tensor(out)
|
|
return return_obj(out)
|
|
|
|
def __call__(self, x, return_tensors=None, **kwargs):
|
|
return self.encode(x, return_tensors, **kwargs)
|
|
|
|
def decode(self, x, **kwargs):
|
|
return sp.decode(x.tolist())
|
|
|
|
def batch_decode(self, x, **kwargs):
|
|
return self.decode(x, **kwargs)
|
|
|
|
self.tokenizer = HFTokenizerInterface()
|
|
self.tokenizer.eos_token_id = sp.eos_id()
|
|
self.tokenizer.bos_token_id = sp.bos_id()
|
|
self.tokenizer.pad_token_id = sp.pad_id()
|
|
elif self.model_type == 'vila':
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
self.args.hf_model_dir + "/llm",
|
|
use_fast=False,
|
|
use_legacy=False)
|
|
else:
|
|
use_fast = False if self.model_type != "phi-3-vision" else True
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
self.args.hf_model_dir, use_fast=use_fast, use_legacy=False)
|
|
|
|
self.tokenizer.padding_side = "right"
|
|
|
|
def init_image_encoder(self):
|
|
vision_encoder_path = os.path.join(self.args.visual_engine_dir,
|
|
self.args.visual_engine_name)
|
|
logger.info(f'Loading engine from {vision_encoder_path}')
|
|
with open(vision_encoder_path, 'rb') as f:
|
|
engine_buffer = f.read()
|
|
logger.info(f'Creating session from engine {vision_encoder_path}')
|
|
self.visual_encoder_session = Session.from_serialized_engine(
|
|
engine_buffer)
|
|
if self.model_type in ["phi-3-vision", "llava_next"]:
|
|
self.image_newlines = {}
|
|
image_newlines_path = os.path.join(self.args.visual_engine_dir,
|
|
'image_newlines.safetensors')
|
|
with safe_open(image_newlines_path,
|
|
framework="pt",
|
|
device=self.device) as f:
|
|
for k in f.keys():
|
|
self.image_newlines[k] = f.get_tensor(k)
|
|
|
|
def init_llm(self):
|
|
if self.decoder_llm:
|
|
self.model = ModelRunner.from_dir(self.args.llm_engine_dir,
|
|
rank=mpi_rank(),
|
|
debug_mode=False,
|
|
stream=self.stream,
|
|
enable_context_fmha_fp32_acc=self.
|
|
args.enable_context_fmha_fp32_acc)
|
|
self.model_config = self.model.session._model_config
|
|
self.runtime_mapping = self.model.session.mapping
|
|
else:
|
|
self.model = EncDecModelRunner.from_engine(
|
|
os.path.basename(self.args.hf_model_dir),
|
|
self.args.llm_engine_dir,
|
|
skip_encoder=self.model_type in ['nougat', 'pix2struct'],
|
|
debug_mode=False,
|
|
stream=self.stream,
|
|
enable_context_fmha_fp32_acc=self.args.
|
|
enable_context_fmha_fp32_acc)
|
|
if self.model_type in ['nougat', 'pix2struct']:
|
|
self.model_config = self.model.decoder_model_config
|
|
self.runtime_mapping = self.model.decoder_runtime_mapping
|
|
else:
|
|
self.model_config = self.model.encoder_model_config
|
|
self.runtime_mapping = self.model.encoder_runtime_mapping
|
|
|
|
def video_preprocess(self, video_path):
|
|
from decord import VideoReader
|
|
if isinstance(video_path, str):
|
|
vr = VideoReader(video_path)
|
|
num_frames = self.num_frames
|
|
if num_frames == -1:
|
|
frames = [
|
|
Image.fromarray(frame.asnumpy()[:, :, ::-1]).convert('RGB')
|
|
for frame in vr
|
|
]
|
|
else:
|
|
# equally sliced frames into self.num_frames frames
|
|
# if self.num_frames is greater than the number of frames in the video, we will repeat the last frame
|
|
num_frames = min(num_frames, len(vr))
|
|
indices = np.linspace(0, len(vr) - 1, num=num_frames, dtype=int)
|
|
frames = [
|
|
Image.fromarray(
|
|
vr[idx].asnumpy()[:, :, ::-1]).convert('RGB')
|
|
for idx in indices
|
|
]
|
|
if len(frames) < num_frames:
|
|
frames += [frames[-1]] * (num_frames - len(frames))
|
|
else:
|
|
frames = self.video_path
|
|
|
|
from transformers import CLIPImageProcessor
|
|
processor = CLIPImageProcessor.from_pretrained(
|
|
"openai/clip-vit-large-patch14", torch_dtype=torch.bfloat16)
|
|
frames = processor.preprocess(frames,
|
|
return_tensors="pt")['pixel_values']
|
|
# make dtype consistent with vision encoder
|
|
media_tensors = frames.to(str_dtype_to_torch(
|
|
self.vision_precision)) # [num_frames, 3, H, W]
|
|
return media_tensors.unsqueeze(0) #[1, num_frames, 3, H, W]
|
|
|
|
def preprocess(self, warmup, pre_prompt, post_prompt, image,
|
|
attention_mask):
|
|
if self.model_type == 'kosmos-2':
|
|
input_ids = image['input_ids'].clone()
|
|
image_mask = image["image_embeds_position_mask"]
|
|
image = image['pixel_values']
|
|
input_ids += image_mask * (self.model_config.vocab_size - 4)
|
|
input_ids = input_ids.expand(self.args.batch_size,
|
|
*input_ids.shape[1:])
|
|
length = input_ids.shape[1]
|
|
elif self.model_type == 'phi-3-vision':
|
|
input = image
|
|
image = input['pixel_values']
|
|
bs = image.shape[0]
|
|
image = image.flatten(0, 1)
|
|
elif self.model_type == 'llava_next':
|
|
input = image
|
|
image = input['pixel_values']
|
|
bs = image.shape[0]
|
|
image = image[0]
|
|
image_size = input['image_sizes'][0].cpu()
|
|
|
|
if not warmup:
|
|
profiler.start("Vision")
|
|
|
|
visual_features, visual_atts = self.get_visual_features(
|
|
torch.stack(image['image_patches'], dim=0)
|
|
if self.model_type == 'fuyu' else image, attention_mask)
|
|
|
|
if not warmup:
|
|
profiler.stop("Vision")
|
|
|
|
if self.model_type == 'fuyu':
|
|
visual_features = visual_features.squeeze()
|
|
input_ids = image['input_ids'].to(torch.int32)
|
|
image_patches_indices = image['image_patches_indices'].to(
|
|
torch.int32)
|
|
|
|
input_ids = input_ids.expand(self.args.batch_size,
|
|
*input_ids.shape[1:])
|
|
image_patches_indices = image_patches_indices.expand(
|
|
self.args.batch_size, *image_patches_indices.shape[1:])
|
|
|
|
input_ids = self.ptuning_setup_fuyu(input_ids,
|
|
image_patches_indices)
|
|
input_ids = torch.stack(input_ids, dim=0).to('cpu')
|
|
length = input_ids.shape[1]
|
|
|
|
elif self.model_type == 'kosmos-2':
|
|
visual_features = visual_features.squeeze()
|
|
elif self.model_type == 'vila':
|
|
input_ids = self.tokenizer_image_token(
|
|
self.args.batch_size, pre_prompt[0] + post_prompt[0],
|
|
self.tokenizer)
|
|
batch_split_prompts = self.split_prompt_by_images(input_ids)
|
|
first_batch_split_prompts = batch_split_prompts[0]
|
|
# compute prompt length + visual length
|
|
length = sum([ids.shape[1] for ids in first_batch_split_prompts])
|
|
if self.args.batch_size == 1 and len(image) > 1:
|
|
# mode 1: multiple image as a whole, flatten visual dims
|
|
length += visual_atts.shape[0] * visual_atts.shape[1]
|
|
else:
|
|
# mode 2: multiple images individually (replicate prompt for each image)
|
|
length += visual_atts.shape[1]
|
|
|
|
input_lengths = torch.IntTensor([length] * self.args.batch_size).to(
|
|
torch.int32)
|
|
input_ids, ptuning_args = self.setup_fake_prompts_vila(
|
|
self.args.batch_size, visual_features,
|
|
first_batch_split_prompts, input_lengths)
|
|
return input_ids, input_lengths, ptuning_args, visual_features
|
|
elif self.model_type == 'phi-3-vision':
|
|
input_ids = input["input_ids"].clone()
|
|
glb_GN = torch.squeeze(self.image_newlines["glb_GN"].clone(), dim=0)
|
|
sub_GN = self.image_newlines["sub_GN"].clone()
|
|
|
|
H = visual_features.shape[1]
|
|
C = visual_features.shape[-1]
|
|
#bs*17*12*12*3072
|
|
visual_features = visual_features.view(bs, -1, H, H, C)
|
|
global_img_feature = visual_features[:, 0] #bs*12*12*3072
|
|
temp_glb_GN = sub_GN.repeat(bs, H, 1, 1) #bs*12*1*3072
|
|
global_img_feature = torch.cat([global_img_feature, temp_glb_GN],
|
|
dim=2).reshape(bs, -1, C)
|
|
|
|
crop_visual_features = visual_features[:, 1:]
|
|
patch_sizes = [
|
|
image_size // image.shape[-1]
|
|
for image_size in input["image_sizes"]
|
|
]
|
|
visual_features = []
|
|
for global_img_feature, crop_visual_feature, patch_size in zip(
|
|
global_img_feature, crop_visual_features, patch_sizes):
|
|
crop_visual_feature = \
|
|
crop_visual_feature[:patch_size[0]*patch_size[1]].view(patch_size[0], patch_size[1], H, H, C).permute(0, 2, 1, 3, 4).reshape(patch_size[0]*H, patch_size[1]*H, C)
|
|
temp_sub_GN = torch.squeeze(sub_GN.repeat(
|
|
1, patch_size[0] * H, 1, 1),
|
|
dim=0)
|
|
crop_visual_feature = torch.cat(
|
|
[crop_visual_feature, temp_sub_GN], dim=1).reshape(-1, C)
|
|
visual_features.append(
|
|
torch.cat([crop_visual_feature, glb_GN, global_img_feature],
|
|
dim=0))
|
|
|
|
num_img_tokens = [elem.size(0) for elem in visual_features]
|
|
|
|
visual_features = torch.cat(visual_features, dim=0)
|
|
input_ids = input_ids.expand(self.args.batch_size,
|
|
*input_ids.shape[1:])
|
|
input_ids = self.ptuning_setup_phi3(visual_features, input_ids,
|
|
num_img_tokens)
|
|
length = input_ids.shape[1]
|
|
elif self.model_type == 'llava_next':
|
|
visual_features = LlavaNextUtils.rearrange_image_features(
|
|
visual_features, self.image_newlines["image_newline"],
|
|
image_size)
|
|
input_ids = self.ptuning_setup_llava_next(visual_features,
|
|
pre_prompt, post_prompt)
|
|
length = input_ids.shape[1]
|
|
else:
|
|
pre_input_ids = self.tokenizer(pre_prompt,
|
|
return_tensors="pt",
|
|
padding=True).input_ids
|
|
if post_prompt[0] is not None:
|
|
post_input_ids = self.tokenizer(post_prompt,
|
|
return_tensors="pt",
|
|
padding=True).input_ids
|
|
if self.model_type == 'video-neva':
|
|
length = pre_input_ids.shape[1] + post_input_ids.shape[
|
|
1] + visual_atts.shape[2] * visual_atts.shape[1]
|
|
else:
|
|
length = pre_input_ids.shape[1] + post_input_ids.shape[
|
|
1] + visual_atts.shape[1]
|
|
else:
|
|
post_input_ids = None
|
|
length = pre_input_ids.shape[1] + visual_atts.shape[1]
|
|
|
|
input_lengths = torch.IntTensor([length] * self.args.batch_size).to(
|
|
torch.int32)
|
|
|
|
if self.model_type in [
|
|
'fuyu', 'kosmos-2', 'phi-3-vision', 'llava_next'
|
|
]:
|
|
return input_ids, input_lengths, [visual_features], visual_features
|
|
|
|
input_ids, ptuning_args = self.setup_fake_prompts(
|
|
visual_features, pre_input_ids, post_input_ids, input_lengths)
|
|
|
|
return input_ids, input_lengths, ptuning_args, visual_features
|
|
|
|
@staticmethod
|
|
def tokenizer_image_token(batch_size,
|
|
prompt,
|
|
tokenizer,
|
|
image_token_index=-200):
|
|
prompt_chunks = [
|
|
tokenizer(chunk).input_ids for chunk in prompt.split("<image>")
|
|
]
|
|
|
|
def insert_separator(X, sep):
|
|
return [
|
|
ele for sublist in zip(X, [sep] * len(X)) for ele in sublist
|
|
][:-1]
|
|
|
|
input_ids = []
|
|
offset = 0
|
|
if (len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0
|
|
and prompt_chunks[0][0] == tokenizer.bos_token_id):
|
|
offset = 1
|
|
input_ids.append(prompt_chunks[0][0])
|
|
|
|
for x in insert_separator(prompt_chunks,
|
|
[image_token_index] * (offset + 1)):
|
|
input_ids.extend(x[offset:])
|
|
|
|
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
|
input_ids[input_ids == image_token_index] = 0
|
|
input_ids = input_ids.unsqueeze(0).expand(batch_size, -1)
|
|
return input_ids
|
|
|
|
def split_prompt_by_images(self, tensor):
|
|
batch_splits = []
|
|
for batch in tensor:
|
|
# Find indices where value is zero (<image>)
|
|
zero_indices = (batch == 0).nonzero(as_tuple=False).squeeze(0)
|
|
# Add starting point for slicing
|
|
start_idx = 0
|
|
splits = []
|
|
for idx in zero_indices:
|
|
if start_idx != idx: # Ensure not slicing zero-length tensors
|
|
splits.append(batch[start_idx:idx].unsqueeze(0))
|
|
start_idx = idx + 1 # Move start index past the zero
|
|
if start_idx < len(
|
|
batch): # Handle last segment if it's not zero-ending
|
|
splits.append(batch[start_idx:].unsqueeze(0))
|
|
# Remove empty tensors resulting from consecutive zeros
|
|
splits = [split for split in splits if split.numel() > 0]
|
|
batch_splits.append(splits)
|
|
|
|
return batch_splits
|
|
|
|
def generate(self,
|
|
pre_prompt,
|
|
post_prompt,
|
|
image,
|
|
decoder_input_ids,
|
|
max_new_tokens,
|
|
attention_mask,
|
|
warmup=False):
|
|
if not warmup:
|
|
profiler.start("Generate")
|
|
|
|
input_ids, input_lengths, ptuning_args, visual_features = self.preprocess(
|
|
warmup, pre_prompt, post_prompt, image, attention_mask)
|
|
if warmup: return None
|
|
|
|
profiler.start("LLM")
|
|
if self.decoder_llm:
|
|
end_id = self.tokenizer.eos_token_id
|
|
if 'opt' in self.model_type and 'blip2' in self.model_type:
|
|
# For BLIP2-OPT, model outputs a "\n" at the end.
|
|
# we avoid it by using newline as the end token
|
|
end_id = self.tokenizer.encode("\n",
|
|
add_special_tokens=False)[0]
|
|
|
|
ptuning_args[0] = torch.stack([ptuning_args[0]])
|
|
output_ids = self.model.generate(
|
|
input_ids,
|
|
sampling_config=None,
|
|
prompt_table=ptuning_args[0],
|
|
max_new_tokens=max_new_tokens,
|
|
end_id=end_id,
|
|
pad_id=self.tokenizer.pad_token_id
|
|
if self.tokenizer.pad_token_id is not None else
|
|
self.tokenizer.all_special_ids[0],
|
|
top_k=self.args.top_k,
|
|
top_p=self.args.top_p,
|
|
temperature=self.args.temperature,
|
|
repetition_penalty=self.args.repetition_penalty,
|
|
num_beams=self.args.num_beams,
|
|
output_sequence_lengths=False,
|
|
return_dict=False)
|
|
else:
|
|
if self.model_type in ['nougat', 'pix2struct']:
|
|
# Trim encoder input_ids to match visual features shape
|
|
ids_shape = (self.args.batch_size, visual_features.shape[1])
|
|
if self.model_type == 'nougat':
|
|
input_ids = torch.zeros(ids_shape, dtype=torch.int32)
|
|
elif self.model_type == 'pix2struct':
|
|
input_ids = torch.ones(ids_shape, dtype=torch.int32)
|
|
|
|
output_ids = self.model.generate(
|
|
input_ids,
|
|
decoder_input_ids,
|
|
max_new_tokens,
|
|
num_beams=self.args.num_beams,
|
|
bos_token_id=self.tokenizer.bos_token_id,
|
|
pad_token_id=self.tokenizer.pad_token_id,
|
|
eos_token_id=self.tokenizer.eos_token_id,
|
|
debug_mode=False,
|
|
prompt_embedding_table=ptuning_args[0],
|
|
prompt_tasks=ptuning_args[1],
|
|
prompt_vocab_size=ptuning_args[2],
|
|
attention_mask=attention_mask)
|
|
|
|
# Reset input_lengths to match decoder_input_ids
|
|
input_lengths = torch.ones(input_lengths.shape,
|
|
dtype=input_lengths.dtype)
|
|
profiler.stop("LLM")
|
|
|
|
if mpi_rank() == 0:
|
|
# Extract a list of tensors of shape beam_width x output_ids.
|
|
output_beams_list = [
|
|
self.tokenizer.batch_decode(
|
|
output_ids[batch_idx, :, input_lengths[batch_idx]:],
|
|
skip_special_tokens=True)
|
|
for batch_idx in range(self.args.batch_size)
|
|
]
|
|
|
|
stripped_text = [[
|
|
output_beams_list[batch_idx][beam_idx].strip()
|
|
for beam_idx in range(self.args.num_beams)
|
|
] for batch_idx in range(self.args.batch_size)]
|
|
profiler.stop("Generate")
|
|
return stripped_text
|
|
else:
|
|
profiler.stop("Generate")
|
|
return None
|
|
|
|
def get_visual_features(self, image, attention_mask):
|
|
visual_features = {
|
|
'input': image.to(str_dtype_to_torch(self.vision_precision))
|
|
}
|
|
if attention_mask is not None:
|
|
visual_features['attention_mask'] = attention_mask
|
|
tensor_info = [
|
|
TensorInfo('input', str_dtype_to_trt(self.vision_precision),
|
|
image.shape)
|
|
]
|
|
if attention_mask is not None:
|
|
tensor_info.append(
|
|
TensorInfo('attention_mask', trt.DataType.INT32,
|
|
attention_mask.shape))
|
|
|
|
visual_output_info = self.visual_encoder_session.infer_shapes(
|
|
tensor_info)
|
|
|
|
visual_outputs = {
|
|
t.name: torch.empty(tuple(t.shape),
|
|
dtype=trt_dtype_to_torch(t.dtype),
|
|
device=image.device)
|
|
for t in visual_output_info
|
|
}
|
|
|
|
ok = self.visual_encoder_session.run(visual_features, visual_outputs,
|
|
self.stream.cuda_stream)
|
|
assert ok, "Runtime execution failed for vision encoder session"
|
|
self.stream.synchronize()
|
|
|
|
image_embeds = visual_outputs['output']
|
|
image_atts = torch.ones(image_embeds.size()[:-1],
|
|
dtype=torch.long).to(image.device)
|
|
|
|
return image_embeds, image_atts
|
|
|
|
def setup_fake_prompts_vila(self, batch_size, visual_features,
|
|
split_input_ids, input_lengths):
|
|
# visual_features (num_images, feature_len, token_embed)
|
|
# Assemble fake prompts which points to image embedding actually
|
|
fake_prompt_counter = self.model_config.vocab_size
|
|
if batch_size == 1:
|
|
# only check for multi-image inference (mode 1)
|
|
assert len(visual_features) <= len(
|
|
split_input_ids
|
|
), "Unexpected number of visual features. Please check #<image> in prompt and the #image files."
|
|
|
|
input_ids = []
|
|
if batch_size == 1:
|
|
# mode 1: multiple image as a whole, concat all prompts together, <pre><image1><inter><image2>...<post>
|
|
input_ids = [split_input_ids[0]]
|
|
for idx, visual_feature in enumerate(visual_features):
|
|
fake_prompt_id = torch.arange(
|
|
fake_prompt_counter,
|
|
fake_prompt_counter + visual_feature.shape[0])
|
|
fake_prompt_counter += visual_feature.shape[0]
|
|
fake_prompt_id = fake_prompt_id.unsqueeze(0)
|
|
input_ids.append(fake_prompt_id)
|
|
# in case no post prompt
|
|
if len(split_input_ids) > idx + 1:
|
|
input_ids.append(split_input_ids[idx + 1])
|
|
|
|
elif batch_size > 1:
|
|
# mode 2: each image have individual prompt, <pre><image><post>
|
|
for idx, visual_feature in enumerate(visual_features):
|
|
input_ids.append(split_input_ids[0])
|
|
fake_prompt_id = torch.arange(
|
|
fake_prompt_counter,
|
|
fake_prompt_counter + visual_feature.shape[0])
|
|
fake_prompt_counter += visual_feature.shape[0]
|
|
fake_prompt_id = fake_prompt_id.unsqueeze(0)
|
|
input_ids.append(fake_prompt_id)
|
|
if len(split_input_ids) > 1:
|
|
input_ids.append(split_input_ids[1])
|
|
|
|
input_ids = torch.cat(input_ids, dim=1).contiguous().to(torch.int32)
|
|
input_ids = input_ids.reshape(batch_size, -1)
|
|
|
|
if self.decoder_llm or self.runtime_mapping.is_first_pp_rank():
|
|
ptuning_args = self.ptuning_setup(visual_features, input_ids,
|
|
input_lengths)
|
|
else:
|
|
ptuning_args = [None, None, None]
|
|
|
|
return input_ids, ptuning_args
|
|
|
|
def setup_fake_prompts(self, visual_features, pre_input_ids, post_input_ids,
|
|
input_lengths):
|
|
# Assemble fake prompts which points to image embedding actually
|
|
if hasattr(self, 'num_frames') and (visual_features.shape[1]
|
|
== self.num_frames):
|
|
visual_features = visual_features.view(visual_features.shape[0], -1,
|
|
visual_features.shape[-1])
|
|
|
|
fake_prompt_id = torch.arange(
|
|
self.model_config.vocab_size, self.model_config.vocab_size +
|
|
visual_features.shape[0] * visual_features.shape[1])
|
|
fake_prompt_id = fake_prompt_id.reshape(visual_features.shape[0],
|
|
visual_features.shape[1])
|
|
|
|
if 'cogvlm' in self.model_type:
|
|
input_ids = torch.cat(
|
|
[pre_input_ids[:, 0:1], fake_prompt_id, pre_input_ids[:, 1:]],
|
|
dim=1).contiguous().to(torch.int32)
|
|
else:
|
|
if post_input_ids is not None:
|
|
input_ids = [pre_input_ids, fake_prompt_id, post_input_ids]
|
|
else:
|
|
input_ids = [fake_prompt_id, pre_input_ids]
|
|
input_ids = torch.cat(input_ids, dim=1).contiguous().to(torch.int32)
|
|
|
|
if self.decoder_llm or self.runtime_mapping.is_first_pp_rank():
|
|
ptuning_args = self.ptuning_setup(visual_features, input_ids,
|
|
input_lengths)
|
|
else:
|
|
ptuning_args = [None, None, None]
|
|
|
|
return input_ids, ptuning_args
|
|
|
|
def ptuning_setup_fuyu(self, input_ids, image_patches_indices):
|
|
res_input_ids = []
|
|
for cur_input_ids, cur_image_patches_indices in zip(
|
|
input_ids, image_patches_indices):
|
|
# Truncate input_ids to the length of image_patches_indices
|
|
cur_image_patches_indices = cur_image_patches_indices[:len(
|
|
cur_input_ids)]
|
|
# Get ids of the image_patches
|
|
non_zero_mask = cur_image_patches_indices != -1
|
|
# Replace input_ids with image_patches_indices values (where the patches are placed)
|
|
cur_input_ids = cur_input_ids.masked_scatter(
|
|
non_zero_mask,
|
|
cur_image_patches_indices[non_zero_mask] +
|
|
self.model_config.vocab_size,
|
|
)
|
|
res_input_ids.append(cur_input_ids)
|
|
return res_input_ids
|
|
|
|
def ptuning_setup_llava_next(self, visual_features, pre_prompt,
|
|
post_prompt):
|
|
input_ids = []
|
|
fake_prompt_ids = list(
|
|
range(self.model_config.vocab_size,
|
|
self.model_config.vocab_size + visual_features.shape[0]))
|
|
input_ids = self.tokenizer.encode(
|
|
pre_prompt[0]) + fake_prompt_ids + self.tokenizer.encode(
|
|
post_prompt[0])[self.tokenizer.add_bos_token:]
|
|
input_ids = [input_ids] * len(pre_prompt)
|
|
input_ids = torch.tensor(input_ids)
|
|
return input_ids
|
|
|
|
def ptuning_setup_phi3(self, visual_features, input_ids, num_img_tokens):
|
|
fake_prompt_id = torch.arange(
|
|
self.model_config.vocab_size,
|
|
self.model_config.vocab_size + visual_features.shape[0])
|
|
MAX_INPUT_ID = int(1e9)
|
|
positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID),
|
|
as_tuple=False)
|
|
idx = 0
|
|
for i, cnt in enumerate(num_img_tokens):
|
|
input_ids[positions[idx, 0], positions[idx, 1]:positions[idx, 1] +
|
|
cnt] = fake_prompt_id[idx:idx + cnt]
|
|
idx += cnt
|
|
return input_ids
|
|
|
|
def ptuning_setup(self, prompt_table, input_ids, input_lengths):
|
|
hidden_size = self.model_config.hidden_size * self.runtime_mapping.tp_size
|
|
if prompt_table is not None:
|
|
task_vocab_size = torch.tensor(
|
|
[prompt_table.shape[1]],
|
|
dtype=torch.int32,
|
|
).cuda()
|
|
prompt_table = prompt_table.view(
|
|
(prompt_table.shape[0] * prompt_table.shape[1],
|
|
prompt_table.shape[2]))
|
|
|
|
assert prompt_table.shape[
|
|
1] == hidden_size, "Prompt table dimensions do not match hidden size"
|
|
|
|
prompt_table = prompt_table.cuda().to(
|
|
dtype=str_dtype_to_torch(self.model_config.dtype))
|
|
else:
|
|
prompt_table = torch.empty([1, hidden_size]).cuda()
|
|
task_vocab_size = torch.zeros([1]).cuda()
|
|
|
|
if self.model_config.remove_input_padding:
|
|
tasks = torch.zeros([torch.sum(input_lengths)],
|
|
dtype=torch.int32).cuda()
|
|
if self.decoder_llm: tasks = tasks.unsqueeze(0)
|
|
else:
|
|
tasks = torch.zeros(input_ids.shape, dtype=torch.int32).cuda()
|
|
|
|
return [prompt_table, tasks, task_vocab_size]
|
|
|
|
def load_test_image(self):
|
|
if "vila" in self.model_type:
|
|
if self.args.image_path is None:
|
|
img_url = 'https://github.com/Efficient-Large-Model/VILA/raw/main/demo_images/av.png'
|
|
self.args.image_path = img_url
|
|
image = Image.open(
|
|
requests.get(img_url, stream=True,
|
|
timeout=5).raw).convert('RGB')
|
|
return [image] * self.args.batch_size
|
|
else:
|
|
|
|
def load_image(image_path):
|
|
if image_path.startswith("http") or image_path.startswith(
|
|
"https"):
|
|
logger.info(f"downloading image from url {image_path}")
|
|
response = requests.get(image_path, timeout=5)
|
|
image = Image.open(BytesIO(
|
|
response.content)).convert("RGB")
|
|
else:
|
|
image = Image.open(image_path).convert("RGB")
|
|
return image
|
|
|
|
out = []
|
|
image_paths = self.args.image_path.split(self.args.path_sep)
|
|
for image_path in image_paths:
|
|
image = load_image(image_path)
|
|
out.append(image)
|
|
return out
|
|
elif "nougat" in self.model_type:
|
|
filepath = hf_hub_download(
|
|
repo_id="hf-internal-testing/fixtures_docvqa",
|
|
filename="nougat_paper.png",
|
|
repo_type="dataset")
|
|
image = Image.open(filepath)
|
|
elif "fuyu" in self.model_type:
|
|
filepath = hf_hub_download(repo_id="adept/fuyu-8b",
|
|
filename="skateboard.png",
|
|
repo_type='model')
|
|
image = Image.open(filepath)
|
|
elif "kosmos" in self.model_type:
|
|
img_url = 'https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png'
|
|
image = Image.open(
|
|
requests.get(img_url, stream=True,
|
|
timeout=5).raw).convert('RGB')
|
|
elif "pix2struct" in self.model_type:
|
|
img_url = 'https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/multi_col_40963.png'
|
|
image = Image.open(
|
|
requests.get(img_url, stream=True,
|
|
timeout=5).raw).convert('RGB')
|
|
elif "video-neva" in self.model_type:
|
|
image = self.args.video_path
|
|
else:
|
|
img_url = self.args.image_path
|
|
if img_url is None:
|
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
|
|
|
|
if img_url.startswith("http") or img_url.startswith("https"):
|
|
image = Image.open(
|
|
requests.get(img_url, stream=True,
|
|
timeout=5).raw).convert('RGB')
|
|
else:
|
|
image = Image.open(img_url).convert("RGB")
|
|
|
|
return image
|
|
|
|
def setup_inputs(self, input_text, raw_image):
|
|
from torchvision import transforms
|
|
attention_mask = None
|
|
if 'blip2' in self.model_type:
|
|
from transformers import Blip2Processor
|
|
processor = Blip2Processor.from_pretrained(self.args.hf_model_dir)
|
|
image = processor(raw_image, input_text,
|
|
return_tensors="pt")['pixel_values']
|
|
|
|
if input_text is None:
|
|
input_text = "Question: which city is this? Answer:"
|
|
|
|
pre_prompt = input_text
|
|
post_prompt = None
|
|
elif 'nougat' in self.model_type:
|
|
from transformers import NougatProcessor
|
|
processor = NougatProcessor.from_pretrained(self.args.hf_model_dir)
|
|
image = processor(raw_image, return_tensors="pt")['pixel_values']
|
|
|
|
# Nougat doesn't need text prompt (mBART use single token to start generation), just leave a dummy one here
|
|
if input_text is None:
|
|
input_text = "Question: which city is this? Answer:"
|
|
|
|
pre_prompt = input_text
|
|
post_prompt = None
|
|
elif 'cogvlm' in self.model_type:
|
|
image_size = 490
|
|
dtype = torch.bfloat16
|
|
transform = transforms.Compose([
|
|
transforms.Resize(
|
|
(image_size, image_size),
|
|
interpolation=transforms.InterpolationMode.BICUBIC),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
|
|
(0.26862954, 0.26130258, 0.27577711)),
|
|
])
|
|
image = transform(raw_image).to(dtype).unsqueeze(0)
|
|
|
|
if input_text is None:
|
|
input_text = " [INST] which city is this? [/INST] "
|
|
pre_prompt = input_text
|
|
post_prompt = None
|
|
elif 'phi-3-vision' in self.model_type:
|
|
pre_prompt = "<|user|>\n<|image_1|>\n"
|
|
if input_text is None:
|
|
input_text = "Which city is this?"
|
|
post_prompt = input_text + "<|end|>\n<|assistant|>\n"
|
|
prompt = pre_prompt + post_prompt
|
|
processor = AutoProcessor.from_pretrained(self.args.hf_model_dir,
|
|
trust_remote_code=True)
|
|
image = processor(text=prompt,
|
|
images=raw_image,
|
|
return_tensors="pt")
|
|
elif self.model_type == "pix2struct":
|
|
image_processor = AutoProcessor.from_pretrained(
|
|
self.args.hf_model_dir)
|
|
if input_text is None:
|
|
input_text = ""
|
|
inputs = image_processor(
|
|
images=raw_image,
|
|
text=input_text,
|
|
return_tensors="pt",
|
|
)
|
|
image = inputs['flattened_patches']
|
|
image = image.expand(self.args.batch_size, -1, -1).contiguous()
|
|
attention_mask = inputs['attention_mask'].to(self.device).to(
|
|
torch.int)
|
|
attention_mask = attention_mask.expand(self.args.batch_size,
|
|
-1).contiguous()
|
|
pre_prompt = ""
|
|
post_prompt = None
|
|
elif self.model_type == "neva":
|
|
image_size = 384
|
|
dtype = torch.float32
|
|
transform = transforms.Compose([
|
|
transforms.Resize(
|
|
(image_size, image_size),
|
|
interpolation=transforms.InterpolationMode.BICUBIC),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
|
])
|
|
image = transform(raw_image).to(dtype).unsqueeze(0)
|
|
|
|
if input_text is None:
|
|
input_text = "Hi! What is in this image?"
|
|
|
|
pre_prompt = "<extra_id_0>System\n\n<extra_id_1>User\n"
|
|
post_prompt = f"\n{input_text}\n<extra_id_1>Assistant\n"
|
|
|
|
elif self.model_type == "video-neva":
|
|
|
|
image = self.video_preprocess(
|
|
raw_image) # shape (1, num_frames, 3, H, W)
|
|
|
|
if input_text is None:
|
|
input_text = "Hi! What is in this video?"
|
|
|
|
# SteerLM prompt template
|
|
pre_prompt = """<extra_id_0>System\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n\n<extra_id_1>User"""
|
|
post_prompt = f"\n{input_text}\n<extra_id_1>Assistant\n<extra_id_2>quality:4,toxicity:0,humor:0,creativity:0,helpfulness:4,correctness:4,coherence:4,complexity:4,verbosity:4\n" ""
|
|
|
|
elif self.model_type == "llava_next":
|
|
if self.llm_name == "mistralai/Mistral-7B-Instruct-v0.2":
|
|
pre_prompt = "[INST] "
|
|
if input_text is None:
|
|
input_text = "Question: which city is this? Answer:"
|
|
post_prompt = f"\n{input_text} [/INST]"
|
|
prompt = pre_prompt + post_prompt
|
|
|
|
elif self.llm_name == "NousResearch/Nous-Hermes-2-Yi-34B":
|
|
pre_prompt = "<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n"
|
|
if input_text is None:
|
|
input_text = "Question: which city is this? Answer:"
|
|
post_prompt = f"\n{input_text}<|im_end|><|im_start|>assistant\n"
|
|
prompt = pre_prompt + post_prompt
|
|
|
|
else:
|
|
raise Exception(
|
|
f"Prompt template for {self.llm_name} for not included currently"
|
|
)
|
|
|
|
processor = AutoProcessor.from_pretrained(self.args.hf_model_dir,
|
|
trust_remote_code=True)
|
|
image = processor(text=prompt,
|
|
images=raw_image,
|
|
return_tensors="pt")
|
|
|
|
elif self.model_type in ['llava', 'vila', 'fuyu', 'kosmos-2']:
|
|
# LLaVA and VILA
|
|
if self.model_type == "llava":
|
|
pre_prompt = "USER:\n"
|
|
if input_text is None:
|
|
input_text = "Question: which city is this? Answer:"
|
|
elif self.model_type == "vila":
|
|
pre_prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: "
|
|
if input_text is None:
|
|
input_text = "<image>\n Please elaborate what you see in the images?"
|
|
elif self.model_type == 'fuyu':
|
|
pre_prompt = "Describe this image:"
|
|
if input_text is None:
|
|
input_text = "Answer the following VQAv2 question based on the image: How many people are in the image?\n"
|
|
elif self.model_type == "kosmos-2":
|
|
pre_prompt = ""
|
|
if input_text is None:
|
|
input_text = "<grounding>An image of"
|
|
|
|
if self.model_type not in ['fuyu', 'kosmos-2']:
|
|
post_prompt = input_text + " ASSISTANT:"
|
|
else:
|
|
post_prompt = None
|
|
|
|
if self.model_type == "vila":
|
|
sys.path.append(self.args.hf_model_dir + "/../VILA")
|
|
from llava.model import LlavaLlamaConfig # noqa
|
|
from transformers import AutoModel
|
|
model = AutoModel.from_pretrained(
|
|
self.args.hf_model_dir,
|
|
device_map='auto',
|
|
trust_remote_code=True,
|
|
)
|
|
vision_tower = model.get_vision_tower()
|
|
image_processor = vision_tower.image_processor
|
|
from llava.mm_utils import process_images
|
|
image = process_images(raw_image, image_processor,
|
|
model.config).to(model.device,
|
|
dtype=torch.float16)
|
|
else:
|
|
processor = AutoProcessor.from_pretrained(
|
|
self.args.hf_model_dir)
|
|
if self.model_type in ['fuyu', 'kosmos-2']:
|
|
image = processor(text=input_text,
|
|
images=raw_image,
|
|
return_tensors='pt')
|
|
else:
|
|
image = processor(text=input_text,
|
|
images=raw_image,
|
|
return_tensors="pt")['pixel_values']
|
|
|
|
# Repeat inputs to match batch size
|
|
pre_prompt = [pre_prompt] * self.args.batch_size
|
|
post_prompt = [post_prompt] * self.args.batch_size
|
|
if self.model_type not in [
|
|
'fuyu', 'pix2struct', 'kosmos-2', 'vila', 'phi-3-vision',
|
|
'llava_next'
|
|
]:
|
|
if image.dim() == 5:
|
|
image = image.expand(self.args.batch_size, -1, -1, -1,
|
|
-1).contiguous()
|
|
else:
|
|
image = image.expand(self.args.batch_size, -1, -1,
|
|
-1).contiguous()
|
|
image = image.to(self.device)
|
|
# Generate decoder_input_ids for enc-dec models
|
|
# Custom prompts can be added as:
|
|
# decoder_input_ids = model.tokenizer(decoder_prompt).input_ids
|
|
if self.decoder_llm:
|
|
decoder_input_ids = None
|
|
else:
|
|
config = AutoConfig.from_pretrained(self.args.hf_model_dir)
|
|
if "blip2" in self.model_type:
|
|
decoder_start_id = config.text_config.decoder_start_token_id # T5
|
|
elif "nougat" in self.model_type:
|
|
decoder_start_id = config.decoder.bos_token_id # Nougat
|
|
else:
|
|
decoder_start_id = config.decoder_start_token_id
|
|
|
|
decoder_input_ids = torch.IntTensor([[decoder_start_id]])
|
|
decoder_input_ids = decoder_input_ids.repeat(
|
|
(self.args.batch_size, 1))
|
|
|
|
return input_text, pre_prompt, post_prompt, image, decoder_input_ids, attention_mask
|
|
|
|
def run(self, input_text, input_image, max_new_tokens):
|
|
input_text, pre_prompt, post_prompt, processed_image, decoder_input_ids, attention_mask = self.setup_inputs(
|
|
input_text, input_image)
|
|
|
|
output_text = self.generate(pre_prompt,
|
|
post_prompt,
|
|
processed_image,
|
|
decoder_input_ids,
|
|
max_new_tokens,
|
|
attention_mask=attention_mask,
|
|
warmup=False)
|
|
|
|
return input_text, output_text
|