TensorRT-LLMs/tests/test_module.py
Kaiyu Xie b777bd6475
Update TensorRT-LLM (#1725)
* Update TensorRT-LLM

---------

Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Tlntin <TlntinDeng01@Gmail.com>
Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com>
Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com>
Co-authored-by: Nathan Price <nathan@abridge.com>
Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com>
Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com>
2024-06-04 20:26:32 +08:00

110 lines
2.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from tensorrt_llm.layers import GroupNorm
from tensorrt_llm.module import Module, ModuleList
class Module1(Module):
def __init__(self, name):
super(Module1, self).__init__()
self.name = name
def forward(self):
self.register_network_output('o1', 1)
class Module2(Module):
def __init__(self):
super(Module2, self).__init__()
self.name = 'module2'
self.m1 = Module1('m1')
self.m2 = Module1('m2')
def forward(self):
self.m1.forward()
self.m2.forward()
self.register_network_output('o2', 2)
self.register_network_output('o3', 3)
class Module3(Module):
def __init__(self):
super(Module3, self).__init__()
self.name = 'module3'
self.m1 = Module2()
def forward(self):
self.m1.forward()
self.register_network_output('o4', 4)
class Module4(Module):
def __init__(self):
super(Module4, self).__init__()
self.layers = ModuleList([Module2(), Module2()])
def forward(self):
for l in self.layers:
l.forward()
class TestModule(unittest.TestCase):
def test_module(self):
m = Module3()
m.forward()
self.assertEqual(4, len(list(m.named_modules())))
self.assertEqual(5, len(list(m.named_network_outputs())))
self.assertEqual(
[("", m), ("m1", m.m1), ("m1.m1", m.m1.m1), ("m1.m2", m.m1.m2)],
list(m.named_modules()),
)
self.assertEqual(
[("", m, None), ("m1", m.m1, m), ("m1.m1", m.m1.m1, m.m1),
("m1.m2", m.m1.m2, m.m1)],
list(m.named_modules_with_parent()),
)
def test_module_list(self):
m = Module4()
m.forward()
self.assertEqual(8, len(list(m.named_modules())))
self.assertEqual(8, len(list(m.named_network_outputs())))
def test_module_named_parameter(self):
m = GroupNorm(2, 4)
md = {k: v for k, v in m.named_parameters()}
tm = torch.nn.GroupNorm(2, 4)
tmd = {k: v for k, v in tm.named_parameters()}
self.assertEqual(len(md), len(tmd))
for k, _ in md.items():
self.assertIn(k, tmd)
for k, _ in tmd.items():
self.assertIn(k, md)