TensorRT-LLMs/tests/unittest/conftest.py
Omer Ullman Argov 94dc97ab10
[feat][test] reuse MPI pool executor across tests (#5566)
Signed-off-by: Omer Ullman Argov <118735753+omera-nv@users.noreply.github.com>
2025-06-29 17:23:12 +03:00

106 lines
3.5 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# # Force resource release after test
import pytest
import torch
import tqdm
from mpi4py.futures import MPIPoolExecutor
def pytest_configure(config):
# avoid thread leak of tqdm's TMonitor
tqdm.tqdm.monitor_interval = 0
@pytest.hookimpl(wrapper=True)
def pytest_runtest_protocol(item, nextitem):
yield
import sys
for m in sys.modules:
if m == 'torch' or m.startswith('torch.'):
import gc
import os
import torch
worker_count = int(os.environ.get('PYTEST_XDIST_WORKER_COUNT', 1))
if (torch.cuda.memory_reserved(0) + torch.cuda.memory_allocated(0)
) >= (torch.cuda.get_device_properties(0).total_memory //
worker_count) * 0.9:
gc.collect()
print("torch.cuda.memory_allocated: %fGB" %
(torch.cuda.memory_allocated(0) / 1024 / 1024 / 1024))
print("torch.cuda.memory_reserved: %fGB" %
(torch.cuda.memory_reserved(0) / 1024 / 1024 / 1024))
print("torch.cuda.max_memory_reserved: %fGB" %
(torch.cuda.max_memory_reserved(0) / 1024 / 1024 / 1024))
torch.cuda.empty_cache()
break
def pytest_addoption(parser):
parser.addoption(
"--test-prefix",
"-P",
action="store",
default=None,
help=
"Prepend a prefix to the test names. Useful for distinguishing different test runs in a test report."
)
@pytest.hookimpl(tryfirst=True, hookwrapper=True)
def pytest_collection_modifyitems(session, config, items):
test_prefix = config.getoption("--test-prefix")
yield
if test_prefix:
# Override the internal nodeid of each item to contain the correct test prefix.
# This is needed for reporting to correctly process the test name in order to bucket
# it into the appropriate test suite.
for item in items:
item._nodeid = f"{test_prefix}/{item._nodeid}"
def pytest_sessionstart(session):
# To counter TransformerEngine v2.3's lazy_compile deferral,
# which will cause Pytest thinks there's a thread leakage.
import torch._inductor.async_compile # noqa: F401
@pytest.fixture(autouse=True)
def torch_empty_cache() -> None:
"""
Automatically empty the torch CUDA cache before each test, to reduce risk of OOM errors.
"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
@pytest.fixture(scope="module", params=[2, 4, 8])
def mpi_pool_executor(request):
"""
Start an MPIPoolExecutor with `request.param` workers.
"""
num_workers = request.param
with MPIPoolExecutor(num_workers) as executor:
# make the number of workers visible to tests
setattr(executor, "num_workers", num_workers)
yield executor