TensorRT-LLMs/tests/integration/defs/examples/test_eagle.py
Dom Brown 8709fe8b53
chore: bump version to 0.19.0 (#3598) (#3841)
test: add test cases for 0.19 release (#3608)

* fix test name



* add quickstart test for nemotron-ultra



* add rcca multi-node test case for deepseek-v3



* add rcca info



---------




squash (#3642)



fix: nvbugs/5187237: fix deterministic mode crash (#3448)

* nvbugs/5187237 nvbugs/5112075: fix deterministic mode error

* remove waive


* Revert "remove waive"

This reverts commit 0bf5486d19906d692bfb7a6262333c296b0087ac.



* revert ar fusion



---------



update fp8 doc (#3647)




tests: change qa perf test to trtllm-bench (#3619)




 fix: FP8 quantized lm_head (NvBug 5214229) (#3567)



infra: Add PR approval protection for the release branch (#3634)



fix: nvbugs/5231298: pytorch allreduce issue (#3673)



Fix: nvbugs/5222698 variable not defined (#3630)

* Fix: nvbugs/5222698 variable not defined



* Tidy code



---------



test:sync waives.txt from main branch by disabling test_perf/gpt_350m-cppmanager case (#3685)



test:restore fp8 kv cache testing for L0 (#3671)



doc: Update DeepSeek perf docs (#3693)

* Update DeepSeek perf docs



* update



* Apply suggestions from code review




---------




tests: waive test_llm_multi_node (#3664)



fix: update test_user_buffers_mm_add_prologue atol (#3711)



Fix: cherry-pick hmac encryption from main branch (#3635)

* security fix cherry-pick changes from main



* fix hmac in remote mpi session (#3649)



---------





Un-waive DS-V3-Lite tests. (#3621)



fix: FP8 kv accuracy (#3675)

* fix FP8 kv accuracy



* update doc



---------



Fix script options for engines. (#3622)



unwaive multi-node test (#3721)



chore : Split more tests out of gpt tests (#3524) (#3674)



doc:add torch examples link into torch backend documentation (#3749)




test: Get Eagle tests working (#3593) (#3722)




Waive L0 test (#3756)



waive failed case in perf test, change default max_batch_size to 512 and write config.json to output log (#3656)





Update ds v3 parameters in stress test. (#3676)

waive gemma on L20 (#3766)



https://nvbugs/5141291: Fix convert.py script for Qwen model. (#3758)

Include Qwen2VLDecoderLayer in the smooth_qwen2_model function.



fix: PP4 fixes and cleanup (#3688)




remove benchmark test list (#3643)



skip disagg deepseek test if sm!=90 (#3720)



test: skip failed cases on B200 (#3710)

* add skip condition to tests



* fix error



---------



test: [nvbug: 5234494] skip_pre_ada for fp8 cases (#3718)

* skip_pre_ada for fp8 cases



* update



* update after rebase



---------



add know issue to deepseek doc. (#3800)



Fix ModelOpt Mixtral AWQ OOM (#3714) (#3761)




Waive L0 tests (#3826)



fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793)

* Reduce memory usage in fused moe op associated with AutoTuning.
* Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens.
* Add free_memory logic of workspace in min_latency_mode fused moe path.



* Fix fused_moe fallback issue. (#3652)

min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression.



---------



[doc] Better document for Draft-Target-Model (DTM) speculative decoding (#3797)




Fix pre-commit



Fix again



Address some review comments for the MI

Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
Co-authored-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
2025-04-29 16:57:22 +08:00

387 lines
17 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
from defs.common import (convert_weights, get_dummy_spec_decoding_heads,
venv_check_call)
from defs.conftest import skip_post_blackwell, skip_pre_ada
from defs.trt_test_alternative import check_call
@skip_post_blackwell
@pytest.mark.parametrize("use_dynamic_tree", [False, True],
ids=['eagle1', 'eagle2'])
@pytest.mark.parametrize("batch_size", [1, 8], ids=['bs1', 'bs8'])
@pytest.mark.parametrize("data_type", ['float16'])
@pytest.mark.parametrize("eagle_model_roots", ["EAGLE-Vicuna-7B-v1.3"],
indirect=True)
def test_llm_eagle_1gpu(batch_size, data_type, use_dynamic_tree,
eagle_model_roots, eagle_example_root,
llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir,
engine_dir):
print("Build engines...")
model_name = "eagle"
model_dir = convert_weights(llm_venv=llm_venv,
example_root=eagle_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=eagle_model_roots,
data_type=data_type)
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
f"--gpt_attention_plugin={data_type}",
f"--gemm_plugin={data_type}",
f"--max_beam_width=1",
"--remove_input_padding=enable",
"--context_fmha=enable",
"--use_paged_context_fmha=enable",
"--max_input_len=1024",
"--max_seq_len=1536",
f"--max_batch_size={batch_size}",
"--paged_kv_cache=enable",
'--speculative_decoding_mode=eagle',
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run run...")
run_cmd = [
f"{eagle_example_root}/../run.py",
"--max_output_len=100",
f"--tokenizer_dir={eagle_model_roots[0]}",
"--log_level=verbose",
f"--engine_dir={engine_dir}",
]
if use_dynamic_tree:
run_cmd.extend(
[f"--eagle_dynamic_tree_max_top_k={3}", "--eagle_use_dynamic_tree"])
venv_check_call(llm_venv, run_cmd)
print("Run summarize...")
summary_cmd = [
f"{eagle_example_root}/../summarize.py", "--test_trt_llm",
"--hf_model_dir", f"{eagle_model_roots[0]}", "--tokenizer_dir",
f"{eagle_model_roots[0]}", f"--engine_dir={engine_dir}",
"--check_accuracy", "--tensorrt_llm_rouge1_threshold=24",
"--eagle_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]",
f"--max_ite=40", f"--batch_size={batch_size}",
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
]
if use_dynamic_tree:
summary_cmd.extend(
[f"--eagle_dynamic_tree_max_top_k={3}", "--eagle_use_dynamic_tree"])
venv_check_call(llm_venv, summary_cmd)
# TODO: remove skip_post_blackwell after Speculative decoding is supported.
@skip_post_blackwell
@skip_pre_ada
@pytest.mark.parametrize("batch_size", [8], ids=['bs8'])
@pytest.mark.parametrize("data_type", ['float16'])
@pytest.mark.parametrize("eagle_model_roots", ["llama3.1-eagle-8b-hf_v0.5"],
indirect=True)
def test_llm_eagle_1gpu_modelopt_ckpt(batch_size, data_type, eagle_model_roots,
eagle_example_root, llm_datasets_root,
llm_rouge_root, llm_venv, cmodel_dir,
engine_dir):
print("Build engines...")
model_name = "eagle"
# Although the datatype is float16, the actual weights are FP8.
# The datatype in the convert stage is used for the input and output of the plugin.
model_dir = convert_weights(llm_venv=llm_venv,
example_root=eagle_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=eagle_model_roots,
data_type=data_type)
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
f"--max_beam_width=1",
"--use_paged_context_fmha=enable",
f"--max_batch_size={batch_size}",
"--speculative_decoding_mode=eagle",
"--multiple_profiles=enable" # also test multiple_profiles
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run run...")
run_cmd = [
f"{eagle_example_root}/../run.py", f"--engine_dir={engine_dir}",
f"--tokenizer_dir={eagle_model_roots}",
"--eagle_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]",
"--max_output_len=100"
]
venv_check_call(llm_venv, run_cmd)
def test_with_dummy_eagle(hf_model_root,
use_dynamic_tree,
eagle_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
batch_size=8,
data_type="bfloat16"):
print("Build engines...")
model_name = "eagle"
print("Creating dummy Eagle heads...")
get_dummy_spec_decoding_heads(hf_model_dir=hf_model_root,
save_dir=llm_venv.get_working_directory(),
mode='eagle')
eagle_model_root = os.path.join(llm_venv.get_working_directory(), 'fp8')
ckpt_dir = convert_weights(llm_venv=llm_venv,
example_root=eagle_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=eagle_model_root,
data_type=data_type)
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--gpt_attention_plugin={data_type}",
f"--gemm_plugin={data_type}",
f"--max_beam_width=1",
"--remove_input_padding=enable",
"--context_fmha=enable",
"--use_paged_context_fmha=enable",
"--max_input_len=1024",
"--max_seq_len=1536",
f"--max_batch_size={batch_size}",
"--paged_kv_cache=enable",
'--speculative_decoding_mode=eagle',
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run run...")
run_cmd = [
f"{eagle_example_root}/../run.py",
"--max_output_len=100",
f"--tokenizer_dir={hf_model_root}",
"--log_level=verbose",
f"--engine_dir={engine_dir}",
]
if use_dynamic_tree:
run_cmd.extend(
[f"--eagle_dynamic_tree_max_top_k={3}", "--eagle_use_dynamic_tree"])
venv_check_call(llm_venv, run_cmd)
print("Run summarize...")
summary_cmd = [
f"{eagle_example_root}/../summarize.py", "--test_trt_llm",
"--hf_model_dir", f"{hf_model_root}", "--tokenizer_dir",
f"{hf_model_root}", f"--engine_dir={engine_dir}",
"--eagle_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]",
f"--max_ite=40", f"--batch_size={batch_size}",
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
]
if use_dynamic_tree:
summary_cmd.extend(
[f"--eagle_dynamic_tree_max_top_k={3}", "--eagle_use_dynamic_tree"])
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.parametrize("use_dynamic_tree", [False, True],
ids=['eagle1', 'eagle2'])
@pytest.mark.parametrize("llama_model_root",
['llama-v2-7b-hf', 'llama-3.1-8b', 'llama-3.2-1b'],
indirect=True)
def test_llama_eagle_1gpu(llama_model_root,
eagle_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
use_dynamic_tree,
batch_size=8,
data_type='bfloat16'):
test_with_dummy_eagle(hf_model_root=llama_model_root,
eagle_example_root=eagle_example_root,
llm_venv=llm_venv,
cmodel_dir=cmodel_dir,
engine_dir=engine_dir,
batch_size=batch_size,
data_type=data_type,
use_dynamic_tree=use_dynamic_tree,
llm_datasets_root=llm_datasets_root,
llm_rouge_root=llm_rouge_root)
@pytest.mark.parametrize("use_dynamic_tree", [False, True],
ids=['eagle1', 'eagle2'])
@pytest.mark.parametrize("code_llama_model_root", ['CodeLlama-7b-Instruct'],
indirect=True)
def test_codellama_eagle_1gpu(code_llama_model_root,
eagle_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
use_dynamic_tree,
batch_size=8,
data_type='bfloat16'):
test_with_dummy_eagle(hf_model_root=code_llama_model_root,
eagle_example_root=eagle_example_root,
llm_venv=llm_venv,
cmodel_dir=cmodel_dir,
engine_dir=engine_dir,
batch_size=batch_size,
data_type=data_type,
use_dynamic_tree=use_dynamic_tree,
llm_datasets_root=llm_datasets_root,
llm_rouge_root=llm_rouge_root)
@pytest.mark.parametrize("use_dynamic_tree", [False, True],
ids=['eagle1', 'eagle2'])
@pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'],
indirect=True)
def test_mistral_eagle_1gpu(llm_mistral_model_root,
eagle_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
use_dynamic_tree,
batch_size=8,
data_type='bfloat16'):
test_with_dummy_eagle(hf_model_root=llm_mistral_model_root,
eagle_example_root=eagle_example_root,
llm_venv=llm_venv,
cmodel_dir=cmodel_dir,
engine_dir=engine_dir,
batch_size=batch_size,
data_type=data_type,
use_dynamic_tree=use_dynamic_tree,
llm_datasets_root=llm_datasets_root,
llm_rouge_root=llm_rouge_root)
@pytest.mark.parametrize("use_dynamic_tree", [False, True],
ids=['eagle1', 'eagle2'])
@pytest.mark.parametrize("mistral_nemo_model_root", ['Mistral-Nemo-12b-Base'],
indirect=True)
def test_mistral_nemo_eagle_1gpu(mistral_nemo_model_root,
eagle_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
use_dynamic_tree,
batch_size=8,
data_type='bfloat16'):
test_with_dummy_eagle(hf_model_root=mistral_nemo_model_root,
eagle_example_root=eagle_example_root,
llm_venv=llm_venv,
cmodel_dir=cmodel_dir,
engine_dir=engine_dir,
batch_size=batch_size,
data_type=data_type,
use_dynamic_tree=use_dynamic_tree,
llm_datasets_root=llm_datasets_root,
llm_rouge_root=llm_rouge_root)
@pytest.mark.parametrize("use_dynamic_tree", [False, True],
ids=['eagle1', 'eagle2'])
@pytest.mark.parametrize("llm_qwen_model_root", [
"qwen_7b_chat", "qwen1.5_7b_chat", "qwen2_7b_instruct",
"qwen2_0.5b_instruct", "qwen2.5_1.5b_instruct"
],
indirect=True)
def test_qwen_eagle_1gpu(llm_qwen_model_root,
eagle_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
use_dynamic_tree,
batch_size=8,
data_type='bfloat16'):
test_with_dummy_eagle(hf_model_root=llm_qwen_model_root,
eagle_example_root=eagle_example_root,
llm_venv=llm_venv,
cmodel_dir=cmodel_dir,
engine_dir=engine_dir,
batch_size=batch_size,
data_type=data_type,
use_dynamic_tree=use_dynamic_tree,
llm_datasets_root=llm_datasets_root,
llm_rouge_root=llm_rouge_root)
@pytest.mark.parametrize("use_dynamic_tree", [False, True],
ids=['eagle1', 'eagle2'])
@pytest.mark.parametrize("llm_phi_model_root", [
"phi-2", "Phi-3-mini-128k-instruct", "Phi-3-small-128k-instruct",
"Phi-3.5-mini-instruct"
],
indirect=True)
def test_phi_eagle_1gpu(llm_phi_model_root,
eagle_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
use_dynamic_tree,
batch_size=8,
data_type='bfloat16'):
test_with_dummy_eagle(hf_model_root=llm_phi_model_root,
eagle_example_root=eagle_example_root,
llm_venv=llm_venv,
cmodel_dir=cmodel_dir,
engine_dir=engine_dir,
batch_size=batch_size,
data_type=data_type,
use_dynamic_tree=use_dynamic_tree,
llm_datasets_root=llm_datasets_root,
llm_rouge_root=llm_rouge_root)