TensorRT-LLMs/cpp/tensorrt_llm/pybind/executor/bindings.cpp
Kaiyu Xie 75057cd036
Update TensorRT-LLM (#2333)
* Update TensorRT-LLM

---------

Co-authored-by: Puneesh Khanna <puneesh.khanna@tii.ae>
Co-authored-by: Ethan Zhang <26497102+ethnzhng@users.noreply.github.com>
2024-10-15 15:28:40 +08:00

756 lines
49 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <pybind11/cast.h>
#include <pybind11/functional.h>
#include <pybind11/operators.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "bindings.h"
#include "executor.h"
#include "streamCaster.h"
#include "tensorCaster.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/executor/executor.h"
#include "tensorrt_llm/executor/tensor.h"
#include "tensorrt_llm/executor/types.h"
#include <optional>
#include <vector>
namespace py = pybind11;
namespace tle = tensorrt_llm::executor;
using Tensor = tle::Tensor;
using SizeType32 = tle::SizeType32;
using FloatType = tle::FloatType;
using VecTokens = tle::VecTokens;
using IdType = tle::IdType;
using VecTokenExtraIds = tle::VecTokenExtraIds;
namespace tensorrt_llm::pybind::executor
{
void InitBindings(pybind11::module_& m)
{
m.attr("__version__") = tle::version();
py::enum_<tle::ModelType>(m, "ModelType")
.value("DECODER_ONLY", tle::ModelType::kDECODER_ONLY)
.value("ENCODER_ONLY", tle::ModelType::kENCODER_ONLY)
.value("ENCODER_DECODER", tle::ModelType::kENCODER_DECODER);
py::enum_<tle::BatchingType>(m, "BatchingType")
.value("STATIC", tle::BatchingType::kSTATIC)
.value("INFLIGHT", tle::BatchingType::kINFLIGHT);
auto decodingModeGetstate = [](tle::DecodingMode const& self) { return py::make_tuple(self.getState()); };
auto decodingModeSetstate = [](py::tuple state)
{
if (state.size() != 1)
{
throw std::runtime_error("Invalid state!");
}
return tle::DecodingMode(state[0].cast<tle::DecodingMode::UnderlyingType>());
};
py::class_<tle::DecodingMode>(m, "DecodingMode")
.def("Auto", &tle::DecodingMode::Auto)
.def("TopK", &tle::DecodingMode::TopK)
.def("TopP", &tle::DecodingMode::TopP)
.def("TopKTopP", &tle::DecodingMode::TopKTopP)
.def("BeamSearch", &tle::DecodingMode::BeamSearch)
.def("Medusa", &tle::DecodingMode::Medusa)
.def("Lookahead", &tle::DecodingMode::Lookahead)
.def("isAuto", &tle::DecodingMode::isAuto)
.def("isTopK", &tle::DecodingMode::isTopK)
.def("isTopP", &tle::DecodingMode::isTopP)
.def("isTopKorTopP", &tle::DecodingMode::isTopKorTopP)
.def("isTopKandTopP", &tle::DecodingMode::isTopKandTopP)
.def("isBeamSearch", &tle::DecodingMode::isBeamSearch)
.def("isMedusa", &tle::DecodingMode::isMedusa)
.def("isLookahead", &tle::DecodingMode::isLookahead)
.def(py::pickle(decodingModeGetstate, decodingModeSetstate));
py::enum_<tle::RequestType>(m, "RequestType")
.value("REQUEST_TYPE_CONTEXT_AND_GENERATION", tle::RequestType::REQUEST_TYPE_CONTEXT_AND_GENERATION)
.value("REQUEST_TYPE_CONTEXT_ONLY", tle::RequestType::REQUEST_TYPE_CONTEXT_ONLY)
.value("REQUEST_TYPE_GENERATION_ONLY", tle::RequestType::REQUEST_TYPE_GENERATION_ONLY);
py::enum_<tle::CapacitySchedulerPolicy>(m, "CapacitySchedulerPolicy")
.value("MAX_UTILIZATION", tle::CapacitySchedulerPolicy::kMAX_UTILIZATION)
.value("GUARANTEED_NO_EVICT", tle::CapacitySchedulerPolicy::kGUARANTEED_NO_EVICT)
.value("STATIC_BATCH", tle::CapacitySchedulerPolicy::kSTATIC_BATCH);
py::enum_<tle::ContextChunkingPolicy>(m, "ContextChunkingPolicy")
.value("EQUAL_PROGRESS", tle::ContextChunkingPolicy::kEQUAL_PROGRESS)
.value("FIRST_COME_FIRST_SERVED", tle::ContextChunkingPolicy::kFIRST_COME_FIRST_SERVED);
py::enum_<tle::CommunicationType>(m, "CommunicationType").value("MPI", tle::CommunicationType::kMPI);
py::enum_<tle::CommunicationMode>(m, "CommunicationMode")
.value("LEADER", tle::CommunicationMode::kLEADER)
.value("ORCHESTRATOR", tle::CommunicationMode::kORCHESTRATOR);
py::class_<tle::KvCacheStats>(m, "KvCacheStats")
.def(py::init<>())
.def_readwrite("max_num_blocks", &tle::KvCacheStats::maxNumBlocks)
.def_readwrite("free_num_blocks", &tle::KvCacheStats::freeNumBlocks)
.def_readwrite("used_num_blocks", &tle::KvCacheStats::usedNumBlocks)
.def_readwrite("tokens_per_block", &tle::KvCacheStats::tokensPerBlock)
.def_readwrite("alloc_total_blocks", &tle::KvCacheStats::allocTotalBlocks)
.def_readwrite("alloc_new_blocks", &tle::KvCacheStats::allocNewBlocks)
.def_readwrite("reused_blocks", &tle::KvCacheStats::reusedBlocks);
py::class_<tle::StaticBatchingStats>(m, "StaticBatchingStats")
.def(py::init<>())
.def_readwrite("num_scheduled_requests", &tle::StaticBatchingStats::numScheduledRequests)
.def_readwrite("num_context_requests", &tle::StaticBatchingStats::numContextRequests)
.def_readwrite("num_ctx_tokens", &tle::StaticBatchingStats::numCtxTokens)
.def_readwrite("num_gen_tokens", &tle::StaticBatchingStats::numGenTokens)
.def_readwrite("empty_gen_slots", &tle::StaticBatchingStats::emptyGenSlots);
py::class_<tle::InflightBatchingStats>(m, "InflightBatchingStats")
.def(py::init<>())
.def_readwrite("num_scheduled_requests", &tle::InflightBatchingStats::numScheduledRequests)
.def_readwrite("num_context_requests", &tle::InflightBatchingStats::numContextRequests)
.def_readwrite("num_gen_requests", &tle::InflightBatchingStats::numGenRequests)
.def_readwrite("num_paused_requests", &tle::InflightBatchingStats::numPausedRequests)
.def_readwrite("num_ctx_tokens", &tle::InflightBatchingStats::numCtxTokens)
.def_readwrite("micro_batch_id", &tle::InflightBatchingStats::microBatchId)
.def_readwrite("avg_num_decoded_tokens_per_iter", &tle::InflightBatchingStats::avgNumDecodedTokensPerIter);
py::class_<tle::IterationStats>(m, "IterationStats")
.def(py::init<>())
.def_readwrite("timestamp", &tle::IterationStats::timestamp)
.def_readwrite("iter", &tle::IterationStats::iter)
.def_readwrite("iter_latency_ms", &tle::IterationStats::iterLatencyMS)
.def_readwrite("new_active_requests_queue_latency_ms", &tle::IterationStats::newActiveRequestsQueueLatencyMS)
.def_readwrite("num_new_active_requests", &tle::IterationStats::numNewActiveRequests)
.def_readwrite("num_active_requests", &tle::IterationStats::numActiveRequests)
.def_readwrite("num_queued_requests", &tle::IterationStats::numQueuedRequests)
.def_readwrite("num_completed_requests", &tle::IterationStats::numCompletedRequests)
.def_readwrite("max_num_active_requests", &tle::IterationStats::maxNumActiveRequests)
.def_readwrite("gpu_mem_usage", &tle::IterationStats::gpuMemUsage)
.def_readwrite("cpu_mem_usage", &tle::IterationStats::cpuMemUsage)
.def_readwrite("pinned_mem_usage", &tle::IterationStats::pinnedMemUsage)
.def_readwrite("kv_cache_stats", &tle::IterationStats::kvCacheStats)
.def_readwrite("static_batching_stats", &tle::IterationStats::staticBatchingStats)
.def_readwrite("inflight_batching_stats", &tle::IterationStats::inflightBatchingStats)
.def("to_json_str",
[](tle::IterationStats const& iterationStats)
{ return tle::JsonSerialization::toJsonStr(iterationStats); });
py::class_<tle::DebugTensorsPerIteration>(m, "DebugTensorsPerIteration")
.def(py::init<>())
.def_readwrite("iter", &tle::DebugTensorsPerIteration::iter)
.def_readwrite("debug_tensors", &tle::DebugTensorsPerIteration::debugTensors);
py::enum_<tle::RequestStage>(m, "RequestStage")
.value("QUEUED", tle::RequestStage::kQUEUED)
.value("ENCODER_IN_PROGRESS", tle::RequestStage::kENCODER_IN_PROGRESS)
.value("CONTEXT_IN_PROGRESS", tle::RequestStage::kCONTEXT_IN_PROGRESS)
.value("GENERATION_IN_PROGRESS", tle::RequestStage::kGENERATION_IN_PROGRESS)
.value("GENERATION_COMPLETE", tle::RequestStage::kGENERATION_COMPLETE);
py::class_<tle::DisServingRequestStats>(m, "DisServingRequestStats")
.def(py::init<>())
.def_readwrite("kv_cache_transfer_ms", &tle::DisServingRequestStats::kvCacheTransferMS);
py::class_<tle::RequestStats>(m, "RequestStats")
.def(py::init<>())
.def_readwrite("id", &tle::RequestStats::id)
.def_readwrite("stage", &tle::RequestStats::stage)
.def_readwrite("context_prefill_position", &tle::RequestStats::contextPrefillPosition)
.def_readwrite("num_generated_tokens", &tle::RequestStats::numGeneratedTokens)
.def_readwrite("avg_num_decoded_tokens_per_iter", &tle::RequestStats::avgNumDecodedTokensPerIter)
.def_readwrite("scheduled", &tle::RequestStats::scheduled)
.def_readwrite("paused", &tle::RequestStats::paused)
.def_readwrite("dis_serving_stats", &tle::RequestStats::disServingStats)
.def_readwrite("alloc_total_blocks_per_request", &tle::RequestStats::allocTotalBlocksPerRequest)
.def_readwrite("alloc_new_blocks_per_request", &tle::RequestStats::allocNewBlocksPerRequest)
.def_readwrite("reused_blocks_per_request", &tle::RequestStats::reusedBlocksPerRequest)
.def("to_json_str",
[](tle::RequestStats const& iterationStats) { return tle::JsonSerialization::toJsonStr(iterationStats); });
py::class_<tle::RequestStatsPerIteration>(m, "RequestStatsPerIteration")
.def(py::init<>())
.def_readwrite("iter", &tle::RequestStatsPerIteration::iter)
.def_readwrite("request_stats", &tle::RequestStatsPerIteration::requestStats)
.def("to_json_str",
[](tle::RequestStatsPerIteration const& iterationStats)
{ return tle::JsonSerialization::toJsonStr(iterationStats); });
py::class_<tle::SamplingConfig>(m, "SamplingConfig")
// A modified version of constructor to accpect deprecated args randomSeed and minLength
// TODO(enweiz): use the original constructor after the deprecated args are removed
.def(
py::init(
[](tle::SizeType32 beamWidth, std::optional<tle::SizeType32> const& topK,
std::optional<tle::FloatType> const& topP, std::optional<tle::FloatType> const& topPMin,
std::optional<tle::TokenIdType> const& topPResetIds, std::optional<tle::FloatType> const& topPDecay,
std::optional<tle::RandomSeedType> seed, std::optional<tle::RandomSeedType> const& randomSeed,
std::optional<tle::FloatType> const& temperature, std::optional<tle::SizeType32> minTokens,
std::optional<tle::SizeType32> const& minLength,
std::optional<tle::FloatType> const& beamSearchDiversityRate,
std::optional<tle::FloatType> const& repetitionPenalty,
std::optional<tle::FloatType> const& presencePenalty,
std::optional<tle::FloatType> const& frequencyPenalty,
std::optional<tle::FloatType> const& lengthPenalty,
std::optional<tle::SizeType32> const& earlyStopping,
std::optional<tle::SizeType32> const& noRepeatNgramSize)
{
if (randomSeed.has_value())
{
TLLM_LOG_WARNING("random_seed is being deprecated; please use seed instead.");
if (!seed.has_value())
{
seed = randomSeed;
}
}
if (minLength.has_value())
{
TLLM_LOG_WARNING("min_length is being deprecated; please use min_tokens instead.");
if (!minTokens.has_value())
{
minTokens = minLength;
}
}
return std::make_unique<tle::SamplingConfig>(beamWidth, topK, topP, topPMin, topPResetIds,
topPDecay, seed, temperature, minTokens, beamSearchDiversityRate, repetitionPenalty,
presencePenalty, frequencyPenalty, lengthPenalty, earlyStopping, noRepeatNgramSize);
}),
py::arg("beam_width") = 1, py::kw_only(), py::arg("top_k") = py::none(), py::arg("top_p") = py::none(),
py::arg("top_p_min") = py::none(), py::arg("top_p_reset_ids") = py::none(),
py::arg("top_p_decay") = py::none(), py::arg("seed") = py::none(), py::arg("random_seed") = py::none(),
py::arg("temperature") = py::none(), py::arg("min_tokens") = py::none(), py::arg("min_length") = py::none(),
py::arg("beam_search_diversity_rate") = py::none(), py::arg("repetition_penalty") = py::none(),
py::arg("presence_penalty") = py::none(), py::arg("frequency_penalty") = py::none(),
py::arg("length_penalty") = py::none(), py::arg("early_stopping") = py::none(),
py::arg("no_repeat_ngram_size") = py::none())
.def_property("beam_width", &tle::SamplingConfig::getBeamWidth, &tle::SamplingConfig::setBeamWidth)
.def_property("top_k", &tle::SamplingConfig::getTopK, &tle::SamplingConfig::setTopK)
.def_property("top_p", &tle::SamplingConfig::getTopP, &tle::SamplingConfig::setTopP)
.def_property("top_p_min", &tle::SamplingConfig::getTopPMin, &tle::SamplingConfig::setTopPMin)
.def_property("top_p_reset_ids", &tle::SamplingConfig::getTopPResetIds, &tle::SamplingConfig::setTopPResetIds)
.def_property("top_p_decay", &tle::SamplingConfig::getTopPDecay, &tle::SamplingConfig::setTopPDecay)
.def_property("seed", &tle::SamplingConfig::getSeed, &tle::SamplingConfig::setSeed)
.def_property("random_seed", &tle::SamplingConfig::getRandomSeed, &tle::SamplingConfig::setRandomSeed)
.def_property("temperature", &tle::SamplingConfig::getTemperature, &tle::SamplingConfig::setTemperature)
.def_property("min_tokens", &tle::SamplingConfig::getMinTokens, &tle::SamplingConfig::setMinTokens)
.def_property("min_length", &tle::SamplingConfig::getMinLength, &tle::SamplingConfig::setMinLength)
.def_property("beam_search_diversity_rate", &tle::SamplingConfig::getBeamSearchDiversityRate,
&tle::SamplingConfig::setBeamSearchDiversityRate)
.def_property("repetition_penalty", &tle::SamplingConfig::getRepetitionPenalty,
&tle::SamplingConfig::setRepetitionPenalty)
.def_property("presence_penalty", &tle::SamplingConfig::getPresencePenalty,
[](tle::SamplingConfig& self, std::optional<FloatType> v) { return self.setPresencePenalty(v); })
.def_property(
"frequency_penalty", &tle::SamplingConfig::getFrequencyPenalty, &tle::SamplingConfig::setFrequencyPenalty)
.def_property("length_penalty", &tle::SamplingConfig::getLengthPenalty, &tle::SamplingConfig::setLengthPenalty)
.def_property("early_stopping", &tle::SamplingConfig::getEarlyStopping, &tle::SamplingConfig::setEarlyStopping)
.def_property("no_repeat_ngram_size", &tle::SamplingConfig::getNoRepeatNgramSize,
&tle::SamplingConfig::setNoRepeatNgramSize);
py::class_<tle::OutputConfig>(m, "OutputConfig")
.def(py::init<bool, bool, bool, bool, bool>(), py::arg("return_log_probs") = false,
py::arg("return_context_logits") = false, py::arg("return_generation_logits") = false,
py::arg("exclude_input_from_output") = false, py::arg("return_encoder_output") = false)
.def_readwrite("return_log_probs", &tle::OutputConfig::returnLogProbs)
.def_readwrite("return_context_logits", &tle::OutputConfig::returnContextLogits)
.def_readwrite("return_generation_logits", &tle::OutputConfig::returnGenerationLogits)
.def_readwrite("exclude_input_from_output", &tle::OutputConfig::excludeInputFromOutput)
.def_readwrite("return_encoder_output", &tle::OutputConfig::returnEncoderOutput);
py::class_<tle::ExternalDraftTokensConfig>(m, "ExternalDraftTokensConfig")
.def(py::init<VecTokens, std::optional<Tensor>, std::optional<FloatType> const&>(), py::arg("tokens"),
py::arg("logits") = py::none(), py::arg("acceptance_threshold") = py::none())
.def_property_readonly("tokens", &tle::ExternalDraftTokensConfig::getTokens)
.def_property_readonly("logits", &tle::ExternalDraftTokensConfig::getLogits)
.def_property_readonly("acceptance_threshold", &tle::ExternalDraftTokensConfig::getAcceptanceThreshold);
py::class_<tle::PromptTuningConfig>(m, "PromptTuningConfig")
.def(py::init<Tensor, std::optional<VecTokenExtraIds>>(), py::arg("embedding_table"),
py::arg("input_token_extra_ids") = py::none())
.def_property_readonly("embedding_table", &tle::PromptTuningConfig::getEmbeddingTable)
.def_property_readonly("input_token_extra_ids", &tle::PromptTuningConfig::getInputTokenExtraIds);
py::class_<tle::LoraConfig>(m, "LoraConfig")
.def(py::init<uint64_t, std::optional<Tensor>, std::optional<Tensor>>(), py::arg("task_id"),
py::arg("weights") = py::none(), py::arg("config") = py::none())
.def_property_readonly("task_id", &tle::LoraConfig::getTaskId)
.def_property_readonly("weights", &tle::LoraConfig::getWeights)
.def_property_readonly("config", &tle::LoraConfig::getConfig);
py::class_<tle::LookaheadDecodingConfig>(m, "LookaheadDecodingConfig")
.def(py::init<SizeType32, SizeType32, SizeType32>(), py::arg("max_window_size"), py::arg("max_ngram_size"),
py::arg("max_verification_set_size"))
.def_property_readonly("max_window_size", &tle::LookaheadDecodingConfig::getWindowSize)
.def_property_readonly("max_ngram_size", &tle::LookaheadDecodingConfig::getNgramSize)
.def_property_readonly("max_verification_set_size", &tle::LookaheadDecodingConfig::getVerificationSetSize);
py::class_<tle::ContextPhaseParams>(m, "ContextPhaseParams")
.def(py::init<VecTokens, tle::ContextPhaseParams::RequestIdType>(), py::arg("first_gen_tokens"),
py::arg("req_id"));
py::class_<tle::Request> request(m, "Request");
request
// A modified version of constructor to accpect deprecated args maxNewTokens
// TODO(enweiz): use the original constructor after the deprecated args are removed
.def(py::init(
[](tle::VecTokens inputTokenIds, std::optional<tle::SizeType32> maxTokens,
std::optional<tle::SizeType32> maxNewTokens, bool streaming,
tle::SamplingConfig const& samplingConfig, tle::OutputConfig const& outputConfig,
std::optional<tle::SizeType32> const& endId, std::optional<tle::SizeType32> const& padId,
std::optional<std::vector<SizeType32>> positionIds,
std::optional<std::list<tle::VecTokens>> badWords,
std::optional<std::list<tle::VecTokens>> stopWords, std::optional<tle::Tensor> embeddingBias,
std::optional<tle::ExternalDraftTokensConfig> externalDraftTokensConfig,
std::optional<tle::PromptTuningConfig> pTuningConfig, std::optional<tle::LoraConfig> loraConfig,
std::optional<tle::LookaheadDecodingConfig> lookaheadConfig,
std::optional<std::string> logitsPostProcessorName,
std::optional<tle::VecTokens> encoderInputTokenIds, std::optional<tle::IdType> clientId,
bool returnAllGeneratedTokens, tle::PriorityType priority, tle::RequestType type,
std::optional<tle::ContextPhaseParams> contextPhaseParams,
std::optional<tle::Tensor> encoderInputFeatures,
std::optional<tle::SizeType32> encoderOutputLength, SizeType32 numReturnSequences)
{
if (maxNewTokens.has_value())
{
TLLM_LOG_WARNING("max_new_tokens is being deprecated; please use max_tokens instead.");
if (!maxTokens.has_value())
{
maxTokens = maxNewTokens;
}
}
TLLM_CHECK_WITH_INFO(maxTokens.has_value(), "missing required argument max_tokens");
return std::make_unique<tle::Request>(inputTokenIds, maxTokens.value(), streaming, samplingConfig,
outputConfig, endId, padId, positionIds, badWords, stopWords, embeddingBias,
externalDraftTokensConfig, pTuningConfig, loraConfig, lookaheadConfig, logitsPostProcessorName,
encoderInputTokenIds, clientId, returnAllGeneratedTokens, priority, type, contextPhaseParams,
encoderInputFeatures, encoderOutputLength, numReturnSequences);
}),
py::arg("input_token_ids"), py::kw_only(), py::arg("max_tokens") = py::none(),
py::arg("max_new_tokens") = py::none(), py::arg("streaming") = false,
py::arg_v("sampling_config", tle::SamplingConfig(), "SamplingConfig()"),
py::arg_v("output_config", tle::OutputConfig(), "OutputConfig()"), py::arg("end_id") = py::none(),
py::arg("pad_id") = py::none(), py::arg("position_ids") = py::none(), py::arg("bad_words") = py::none(),
py::arg("stop_words") = py::none(), py::arg("embedding_bias") = py::none(),
py::arg("external_draft_tokens_config") = py::none(), py::arg("prompt_tuning_config") = py::none(),
py::arg("lora_config") = py::none(), py::arg("lookahead_config") = py::none(),
py::arg("logits_post_processor_name") = py::none(), py::arg("encoder_input_token_ids") = py::none(),
py::arg("client_id") = py::none(), py::arg("return_all_generated_tokens") = false,
py::arg("priority") = tle::Request::kDefaultPriority,
py::arg_v("type", tle::RequestType::REQUEST_TYPE_CONTEXT_AND_GENERATION,
"RequestType.REQUEST_TYPE_CONTEXT_AND_GENERATION"),
py::arg("context_phase_params") = py::none(), py::arg("encoder_input_features") = py::none(),
py::arg("encoder_output_length") = py::none(), py::arg("num_return_sequences") = 1)
.def_property_readonly("input_token_ids", &tle::Request::getInputTokenIds)
.def_property_readonly("max_tokens", &tle::Request::getMaxTokens)
.def_property_readonly("max_new_tokens", &tle::Request::getMaxNewTokens)
.def_property("streaming", &tle::Request::getStreaming, &tle::Request::setStreaming)
.def_property("sampling_config", &tle::Request::getSamplingConfig, &tle::Request::setSamplingConfig)
.def_property("output_config", &tle::Request::getOutputConfig, &tle::Request::setOutputConfig)
.def_property("end_id", &tle::Request::getEndId, &tle::Request::setEndId)
.def_property("pad_id", &tle::Request::getPadId, &tle::Request::setPadId)
.def_property("position_ids", &tle::Request::getPositionIds, &tle::Request::setPositionIds)
.def_property("bad_words", &tle::Request::getBadWords, &tle::Request::setBadWords)
.def_property("stop_words", &tle::Request::getStopWords, &tle::Request::setStopWords)
.def_property("embedding_bias", &tle::Request::getEmbeddingBias, &tle::Request::setEmbeddingBias)
.def_property("external_draft_tokens_config", &tle::Request::getExternalDraftTokensConfig,
&tle::Request::setExternalDraftTokensConfig)
.def_property(
"prompt_tuning_config", &tle::Request::getPromptTuningConfig, &tle::Request::setPromptTuningConfig)
.def_property("lora_config", &tle::Request::getLoraConfig, &tle::Request::setLoraConfig)
.def_property("lookahead_config", &tle::Request::getLookaheadConfig, &tle::Request::setLookaheadConfig)
.def_property("logits_post_processor_name", &tle::Request::getLogitsPostProcessorName,
&tle::Request::setLogitsPostProcessorName)
.def_property(
"encoder_input_token_ids", &tle::Request::getEncoderInputTokenIds, &tle::Request::setEncoderInputTokenIds)
.def_property("client_id", &tle::Request::getClientId, &tle::Request::setClientId)
.def_property("return_all_generated_tokens", &tle::Request::getReturnAllGeneratedTokens,
&tle::Request::setReturnAllGeneratedTokens)
.def_property("request_type", &tle::Request::getRequestType, &tle::Request::setRequestType)
.def_property(
"encoder_input_features", &tle::Request::getEncoderInputFeatures, &tle::Request::setEncoderInputFeatures)
.def_property(
"num_return_sequences", &tle::Request::getNumReturnSequences, &tle::Request::setNumReturnSequences);
request.attr("BATCHED_POST_PROCESSOR_NAME") = tle::Request::kBatchedPostProcessorName;
py::enum_<tle::FinishReason>(m, "FinishReason")
.value("NOT_FINISHED", tle::FinishReason::kNOT_FINISHED)
.value("END_ID", tle::FinishReason::kEND_ID)
.value("STOP_WORDS", tle::FinishReason::kSTOP_WORDS)
.value("LENGTH", tle::FinishReason::kLENGTH);
py::class_<tle::Result>(m, "Result")
.def(py::init<>())
.def_readwrite("is_final", &tle::Result::isFinal)
.def_readwrite("output_token_ids", &tle::Result::outputTokenIds)
.def_readwrite("cum_log_probs", &tle::Result::cumLogProbs)
.def_readwrite("log_probs", &tle::Result::logProbs)
.def_readwrite("context_logits", &tle::Result::contextLogits)
.def_readwrite("generation_logits", &tle::Result::generationLogits)
.def_readwrite("encoder_output", &tle::Result::encoderOutput)
.def_readwrite("finish_reasons", &tle::Result::finishReasons)
.def_readwrite("sequence_index", &tle::Result::sequenceIndex)
.def_readwrite("is_sequence_final", &tle::Result::isSequenceFinal);
py::class_<tle::Response>(m, "Response")
.def(py::init<IdType, std::string, std::optional<IdType>>(), py::arg("request_id"), py::arg("error_msg"),
py::arg("client_id") = std::nullopt)
.def(py::init<IdType, tle::Result, std::optional<IdType>>(), py::arg("request_id"), py::arg("result"),
py::arg("client_id") = std::nullopt)
.def_property_readonly("request_id", &tle::Response::getRequestId)
.def_property_readonly("client_id", &tle::Response::getClientId)
.def("has_error", &tle::Response::hasError)
.def_property_readonly("error_msg", &tle::Response::getErrorMsg)
.def_property_readonly("result", &tle::Response::getResult);
auto schedulerConfigSetstate = [](py::tuple state)
{
if (state.size() != 2)
{
throw std::runtime_error("Invalid state!");
}
return tle::SchedulerConfig(
state[0].cast<tle::CapacitySchedulerPolicy>(), state[1].cast<std::optional<tle::ContextChunkingPolicy>>());
};
auto schedulerConfigGetstate = [](tle::SchedulerConfig const& self)
{ return py::make_tuple(self.getCapacitySchedulerPolicy(), self.getContextChunkingPolicy()); };
py::class_<tle::SchedulerConfig>(m, "SchedulerConfig")
.def(py::init<tle::CapacitySchedulerPolicy>(),
py::arg_v("capacity_scheduler_policy", tle::CapacitySchedulerPolicy::kGUARANTEED_NO_EVICT,
"CapacitySchedulerPolicy.GUARANTEED_NO_EVICT"))
.def(py::init<tle::CapacitySchedulerPolicy, std::optional<tle::ContextChunkingPolicy> const&>(),
py::arg("capacity_scheduler_policy"), py::arg("context_chunking_policy"))
.def_property_readonly("capacity_scheduler_policy", &tle::SchedulerConfig::getCapacitySchedulerPolicy)
.def_property_readonly("context_chunking_policy", &tle::SchedulerConfig::getContextChunkingPolicy)
.def(py::pickle(schedulerConfigGetstate, schedulerConfigSetstate));
auto kvCacheConfigGetstate = [](tle::KvCacheConfig const& self)
{
return py::make_tuple(self.getEnableBlockReuse(), self.getMaxTokens(), self.getMaxAttentionWindowVec(),
self.getSinkTokenLength(), self.getFreeGpuMemoryFraction(), self.getHostCacheSize(),
self.getOnboardBlocks());
};
auto kvCacheConfigSetstate = [](py::tuple state)
{
if (state.size() != 7)
{
throw std::runtime_error("Invalid state!");
}
return tle::KvCacheConfig(state[0].cast<bool>(), state[1].cast<std::optional<SizeType32>>(),
state[2].cast<std::optional<std::vector<SizeType32>>>(), state[3].cast<std::optional<SizeType32>>(),
state[4].cast<std::optional<float>>(), state[5].cast<std::optional<size_t>>(), state[6].cast<bool>());
};
py::class_<tle::KvCacheConfig>(m, "KvCacheConfig")
.def(py::init<bool, std::optional<SizeType32> const&, std::optional<std::vector<SizeType32>> const&,
std::optional<SizeType32> const&, std::optional<float> const&, std::optional<size_t> const&, bool>(),
py::arg("enable_block_reuse") = false, py::arg("max_tokens") = py::none(),
py::arg("max_attention_window") = py::none(), py::arg("sink_token_length") = py::none(),
py::arg("free_gpu_memory_fraction") = py::none(), py::arg("host_cache_size") = py::none(),
py::arg("onboard_blocks") = true)
.def_property(
"enable_block_reuse", &tle::KvCacheConfig::getEnableBlockReuse, &tle::KvCacheConfig::setEnableBlockReuse)
.def_property("max_tokens", &tle::KvCacheConfig::getMaxTokens, &tle::KvCacheConfig::setMaxTokens)
.def_property("max_attention_window", &tle::KvCacheConfig::getMaxAttentionWindowVec,
&tle::KvCacheConfig::setMaxAttentionWindowVec)
.def_property(
"sink_token_length", &tle::KvCacheConfig::getSinkTokenLength, &tle::KvCacheConfig::setSinkTokenLength)
.def_property("free_gpu_memory_fraction", &tle::KvCacheConfig::getFreeGpuMemoryFraction,
&tle::KvCacheConfig::setFreeGpuMemoryFraction)
.def_property("host_cache_size", &tle::KvCacheConfig::getHostCacheSize, &tle::KvCacheConfig::setHostCacheSize)
.def_property("onboard_blocks", &tle::KvCacheConfig::getOnboardBlocks, &tle::KvCacheConfig::setOnboardBlocks)
.def(py::pickle(kvCacheConfigGetstate, kvCacheConfigSetstate));
py::class_<tle::OrchestratorConfig>(m, "OrchestratorConfig")
.def(py::init<bool, std::string>(), py::arg("is_orchestrator") = true, py::arg("worker_executable_path") = "")
.def_property(
"is_orchestrator", &tle::OrchestratorConfig::getIsOrchestrator, &tle::OrchestratorConfig::setIsOrchestrator)
.def_property("worker_executable_path", &tle::OrchestratorConfig::getWorkerExecutablePath,
&tle::OrchestratorConfig::setWorkerExecutablePath);
auto parallelConfigGetstate = [](tle::ParallelConfig const& self)
{
return py::make_tuple(self.getCommunicationType(), self.getCommunicationMode(), self.getDeviceIds(),
self.getParticipantIds(), self.getOrchestratorConfig());
};
auto parallelConfigSetstate = [](py::tuple state)
{
if (state.size() != 5)
{
throw std::runtime_error("Invalid state!");
}
return tle::ParallelConfig(state[0].cast<tle::CommunicationType>(), state[1].cast<tle::CommunicationMode>(),
state[2].cast<std::optional<std::vector<SizeType32>>>(),
state[3].cast<std::optional<std::vector<SizeType32>>>(),
state[4].cast<std::optional<tle::OrchestratorConfig>>());
};
py::class_<tle::ParallelConfig>(m, "ParallelConfig")
.def(py::init<tle::CommunicationType, tle::CommunicationMode, std::optional<std::vector<SizeType32>> const&,
std::optional<std::vector<SizeType32>> const&, std::optional<tle::OrchestratorConfig> const&>(),
py::arg_v("communication_type", tle::CommunicationType::kMPI, "CommunicationType.MPI"),
py::arg_v("communication_mode", tle::CommunicationMode::kLEADER, "CommunicationMode.LEADER"),
py::arg("device_ids") = py::none(), py::arg("participant_ids") = py::none(),
py::arg("orchestrator_config") = py::none())
.def_property("communication_type", &tle::ParallelConfig::getCommunicationType,
&tle::ParallelConfig::setCommunicationType)
.def_property("communication_mode", &tle::ParallelConfig::getCommunicationMode,
&tle::ParallelConfig::setCommunicationMode)
.def_property("device_ids", &tle::ParallelConfig::getDeviceIds, &tle::ParallelConfig::setDeviceIds)
.def_property(
"participant_ids", &tle::ParallelConfig::getParticipantIds, &tle::ParallelConfig::setParticipantIds)
.def_property("orchestrator_config", &tle::ParallelConfig::getOrchestratorConfig,
&tle::ParallelConfig::setOrchestratorConfig)
.def(py::pickle(parallelConfigGetstate, parallelConfigSetstate));
auto peftCacheConfigSetstate = [](py::tuple state)
{
if (state.size() != 11)
{
throw std::runtime_error("Invalid state!");
}
return tle::PeftCacheConfig(state[0].cast<SizeType32>(), state[1].cast<SizeType32>(),
state[2].cast<SizeType32>(), state[3].cast<SizeType32>(), state[4].cast<SizeType32>(),
state[5].cast<SizeType32>(), state[6].cast<SizeType32>(), state[7].cast<SizeType32>(),
state[8].cast<SizeType32>(), state[9].cast<std::optional<float>>(),
state[10].cast<std::optional<size_t>>());
};
auto peftCacheConfigGetstate = [](tle::PeftCacheConfig const& self)
{
return py::make_tuple(self.getNumHostModuleLayer(), self.getNumDeviceModuleLayer(),
self.getOptimalAdapterSize(), self.getMaxAdapterSize(), self.getNumPutWorkers(), self.getNumEnsureWorkers(),
self.getNumCopyStreams(), self.getMaxPagesPerBlockHost(), self.getMaxPagesPerBlockDevice(),
self.getDeviceCachePercent(), self.getHostCacheSize());
};
py::class_<tle::PeftCacheConfig>(m, "PeftCacheConfig")
.def(py::init<SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, SizeType32,
SizeType32, std::optional<float> const&, std::optional<size_t> const&>(),
py::arg("num_host_module_layer") = 0, py::arg("num_device_module_layer") = 0,
py::arg("optimal_adapter_size") = 8, py::arg("max_adapter_size") = 64, py::arg("num_put_workers") = 1,
py::arg("num_ensure_workers") = 1, py::arg("num_copy_streams") = 1,
py::arg("max_pages_per_block_host") = 24, py::arg("max_pages_per_block_device") = 8,
py::arg("device_cache_percent") = py::none(), py::arg("host_cache_size") = py::none())
.def_property_readonly("num_host_module_layer", &tle::PeftCacheConfig::getNumHostModuleLayer)
.def_property_readonly("num_device_module_layer", &tle::PeftCacheConfig::getNumDeviceModuleLayer)
.def_property_readonly("optimal_adapter_size", &tle::PeftCacheConfig::getOptimalAdapterSize)
.def_property_readonly("max_adapter_size", &tle::PeftCacheConfig::getMaxAdapterSize)
.def_property_readonly("num_put_workers", &tle::PeftCacheConfig::getNumPutWorkers)
.def_property_readonly("num_ensure_workers", &tle::PeftCacheConfig::getNumEnsureWorkers)
.def_property_readonly("num_copy_streams", &tle::PeftCacheConfig::getNumCopyStreams)
.def_property_readonly("max_pages_per_block_host", &tle::PeftCacheConfig::getMaxPagesPerBlockHost)
.def_property_readonly("max_pages_per_block_device", &tle::PeftCacheConfig::getMaxPagesPerBlockDevice)
.def_property_readonly("device_cache_percent", &tle::PeftCacheConfig::getDeviceCachePercent)
.def_property_readonly("host_cache_size", &tle::PeftCacheConfig::getHostCacheSize)
.def(py::pickle(peftCacheConfigGetstate, peftCacheConfigSetstate));
auto decodingConfigGetstate = [](tle::DecodingConfig const& self)
{ return py::make_tuple(self.getDecodingMode(), self.getLookaheadDecodingConfig(), self.getMedusaChoices()); };
auto decodingConfigSetstate = [](py::tuple state)
{
if (state.size() != 3)
{
throw std::runtime_error("Invalid state!");
}
return tle::DecodingConfig(state[0].cast<std::optional<tle::DecodingMode>>(),
state[1].cast<std::optional<tle::LookaheadDecodingConfig>>(),
state[2].cast<std::optional<tle::MedusaChoices>>());
};
py::class_<tle::DecodingConfig>(m, "DecodingConfig")
.def(py::init<std::optional<tle::DecodingMode>, std::optional<tle::LookaheadDecodingConfig>,
std::optional<tle::MedusaChoices>>(),
py::arg("decoding_mode") = py::none(), py::arg("lookahead_decoding_config") = py::none(),
py::arg("medusa_choices") = py::none())
.def_property("decoding_mode", &tle::DecodingConfig::getDecodingMode, &tle::DecodingConfig::setDecodingMode)
.def_property("lookahead_decoding_config", &tle::DecodingConfig::getLookaheadDecodingConfig,
&tle::DecodingConfig::setLookaheadDecoding)
.def_property("medusa_choices", &tle::DecodingConfig::getMedusaChoices, &tle::DecodingConfig::setMedusaChoices)
.def(py::pickle(decodingConfigGetstate, decodingConfigSetstate));
auto debugConfigGetstate = [](tle::DebugConfig const& self)
{
return py::make_tuple(self.getDebugInputTensors(), self.getDebugOutputTensors(), self.getDebugTensorNames(),
self.getDebugTensorsMaxIterations());
};
auto debugConfigSetstate = [](py::tuple state)
{
if (state.size() != 4)
{
throw std::runtime_error("Invalid state!");
}
return tle::DebugConfig(state[0].cast<bool>(), state[1].cast<bool>(), state[2].cast<std::vector<std::string>>(),
state[3].cast<SizeType32>());
};
py::class_<tle::DebugConfig>(m, "DebugConfig")
.def(py::init<bool, bool, std::vector<std::string>, SizeType32>(), py::arg("debug_input_tensors") = false,
py::arg("debug_output_tensors") = false, py::arg("debug_tensor_names") = py::none(),
py::arg("debug_tensors_max_iterations") = false)
.def_property(
"debug_input_tensors", &tle::DebugConfig::getDebugInputTensors, &tle::DebugConfig::setDebugInputTensors)
.def_property(
"debug_output_tensors", &tle::DebugConfig::getDebugOutputTensors, &tle::DebugConfig::setDebugOutputTensors)
.def_property(
"debug_tensor_names", &tle::DebugConfig::getDebugTensorNames, &tle::DebugConfig::setDebugTensorNames)
.def_property("debug_tensors_max_iterations", &tle::DebugConfig::getDebugTensorsMaxIterations,
&tle::DebugConfig::setDebugTensorsMaxIterations)
.def(py::pickle(debugConfigGetstate, debugConfigSetstate));
auto logitsPostProcessorConfigGetstate = [](tle::LogitsPostProcessorConfig const& self)
{ return py::make_tuple(self.getProcessorMap(), self.getProcessorBatched(), self.getReplicate()); };
auto logitsPostProcessorConfigSetstate = [](py::tuple state)
{
if (state.size() != 3)
{
throw std::runtime_error("Invalid LogitsPostProcessorConfig state!");
}
return tle::LogitsPostProcessorConfig(state[0].cast<std::optional<tle::LogitsPostProcessorMap>>(),
state[1].cast<std::optional<tle::LogitsPostProcessorBatched>>(), state[2].cast<bool>());
};
py::class_<tle::LogitsPostProcessorConfig>(m, "LogitsPostProcessorConfig")
.def(py::init<std::optional<tle::LogitsPostProcessorMap>, std::optional<tle::LogitsPostProcessorBatched>,
bool>(),
py::arg("processor_map") = py::none(), py::arg("processor_batched") = py::none(),
py::arg("replicate") = true)
.def_property("processor_map", &tle::LogitsPostProcessorConfig::getProcessorMap,
&tle::LogitsPostProcessorConfig::setProcessorMap)
.def_property("processor_batched", &tle::LogitsPostProcessorConfig::getProcessorBatched,
&tle::LogitsPostProcessorConfig::setProcessorBatched)
.def_property(
"replicate", &tle::LogitsPostProcessorConfig::getReplicate, &tle::LogitsPostProcessorConfig::setReplicate)
.def(py::pickle(logitsPostProcessorConfigGetstate, logitsPostProcessorConfigSetstate));
auto extendedRuntimePerfKnobConfigSetstate = [](py::tuple state)
{
if (state.size() != 4)
{
throw std::runtime_error("Invalid extendedRuntimePerfKnobConfig state!");
}
return tle::ExtendedRuntimePerfKnobConfig(
state[0].cast<bool>(), state[1].cast<bool>(), state[2].cast<bool>(), state[2].cast<SizeType32>());
};
auto extendedRuntimePerfKnobConfigGetstate = [](tle::ExtendedRuntimePerfKnobConfig const& self)
{
return py::make_tuple(self.getMultiBlockMode(), self.getEnableContextFMHAFP32Acc(), self.getCudaGraphMode(),
self.getCudaGraphCacheSize());
};
py::class_<tle::ExtendedRuntimePerfKnobConfig>(m, "ExtendedRuntimePerfKnobConfig")
.def(
py::init<bool, bool>(), py::arg("multi_block_mode") = true, py::arg("enable_context_fmha_fp32_acc") = false)
.def_property("multi_block_mode", &tle::ExtendedRuntimePerfKnobConfig::getMultiBlockMode,
&tle::ExtendedRuntimePerfKnobConfig::setMultiBlockMode)
.def_property("enable_context_fmha_fp32_acc", &tle::ExtendedRuntimePerfKnobConfig::getEnableContextFMHAFP32Acc,
&tle::ExtendedRuntimePerfKnobConfig::setEnableContextFMHAFP32Acc)
.def_property("cuda_graph_mode", &tle::ExtendedRuntimePerfKnobConfig::getCudaGraphMode,
&tle::ExtendedRuntimePerfKnobConfig::setCudaGraphMode)
.def_property("cuda_graph_cache_size", &tle::ExtendedRuntimePerfKnobConfig::getCudaGraphCacheSize,
&tle::ExtendedRuntimePerfKnobConfig::setCudaGraphCacheSize)
.def(py::pickle(extendedRuntimePerfKnobConfigGetstate, extendedRuntimePerfKnobConfigSetstate));
auto executorConfigGetState = [](tle::ExecutorConfig const& self)
{
return py::make_tuple(self.getMaxBeamWidth(), self.getSchedulerConfig(), self.getKvCacheConfig(),
self.getEnableChunkedContext(), self.getNormalizeLogProbs(), self.getIterStatsMaxIterations(),
self.getRequestStatsMaxIterations(), self.getBatchingType(), self.getMaxBatchSize(), self.getMaxNumTokens(),
self.getParallelConfig(), self.getPeftCacheConfig(), self.getLogitsPostProcessorConfig(),
self.getDecodingConfig(), self.getGpuWeightsPercent(), self.getMaxQueueSize(),
self.getExtendedRuntimePerfKnobConfig(), self.getDebugConfig(), self.getRecvPollPeriodMs(),
self.getMaxSeqIdleMicroseconds());
};
auto executorConfigSetState = [](py::tuple state)
{
if (state.size() != 20)
{
throw std::runtime_error("Invalid state!");
}
return tle::ExecutorConfig(state[0].cast<SizeType32>(), state[1].cast<tle::SchedulerConfig>(),
state[2].cast<tle::KvCacheConfig>(), state[3].cast<bool>(), state[4].cast<bool>(),
state[5].cast<SizeType32>(), state[6].cast<SizeType32>(), state[7].cast<tle::BatchingType>(),
state[8].cast<std::optional<SizeType32>>(), state[9].cast<std::optional<SizeType32>>(),
state[10].cast<std::optional<tle::ParallelConfig>>(), state[11].cast<std::optional<tle::PeftCacheConfig>>(),
state[12].cast<std::optional<tle::LogitsPostProcessorConfig>>(),
state[13].cast<std::optional<tle::DecodingConfig>>(), state[14].cast<float>(),
state[15].cast<std::optional<SizeType32>>(), state[16].cast<tle::ExtendedRuntimePerfKnobConfig>(),
state[17].cast<std::optional<tle::DebugConfig>>(), state[18].cast<SizeType32>(),
state[19].cast<uint64_t>());
};
py::class_<tle::ExecutorConfig>(m, "ExecutorConfig")
.def(py::init<SizeType32, tle::SchedulerConfig const&, tle::KvCacheConfig const&, bool, bool, SizeType32,
SizeType32, tle::BatchingType, std::optional<SizeType32>, std::optional<SizeType32>,
std::optional<tle::ParallelConfig>, tle::PeftCacheConfig const&,
std::optional<tle::LogitsPostProcessorConfig>, std::optional<tle::DecodingConfig>, float,
std::optional<SizeType32>, tle::ExtendedRuntimePerfKnobConfig const&, std::optional<tle::DebugConfig>,
SizeType32, uint64_t>(),
py::arg("max_beam_width") = 1, py::arg_v("scheduler_config", tle::SchedulerConfig(), "SchedulerConfig()"),
py::arg_v("kv_cache_config", tle::KvCacheConfig(), "KvCacheConfig()"),
py::arg("enable_chunked_context") = false, py::arg("normalize_log_probs") = true,
py::arg("iter_stats_max_iterations") = tle::kDefaultIterStatsMaxIterations,
py::arg("request_stats_max_iterations") = tle::kDefaultRequestStatsMaxIterations,
py::arg_v("batching_type", tle::BatchingType::kINFLIGHT, "BatchingType.INFLIGHT"),
py::arg("max_batch_size") = py::none(), py::arg("max_num_tokens") = py::none(),
py::arg("parallel_config") = py::none(),
py::arg_v("peft_cache_config", tle::PeftCacheConfig(), "PeftCacheConfig()"),
py::arg("logits_post_processor_config") = py::none(), py::arg("decoding_config") = py::none(),
py::arg("gpu_weights_percent") = 1.0, py::arg("max_queue_size") = py::none(),
py::arg_v("extended_runtime_perf_knob_config", tle::ExtendedRuntimePerfKnobConfig(),
"ExtendedRuntimePerfKnobConfig()"),
py::arg("debug_config") = py::none(), py::arg("recv_poll_period_ms") = 0,
py::arg("max_seq_idle_microseconds") = 180000000)
.def_property("max_beam_width", &tle::ExecutorConfig::getMaxBeamWidth, &tle::ExecutorConfig::setMaxBeamWidth)
.def_property("max_batch_size", &tle::ExecutorConfig::getMaxBatchSize, &tle::ExecutorConfig::setMaxBatchSize)
.def_property("max_num_tokens", &tle::ExecutorConfig::getMaxNumTokens, &tle::ExecutorConfig::setMaxNumTokens)
.def_property(
"scheduler_config", &tle::ExecutorConfig::getSchedulerConfig, &tle::ExecutorConfig::setSchedulerConfig)
.def_property("kv_cache_config", &tle::ExecutorConfig::getKvCacheConfig, &tle::ExecutorConfig::setKvCacheConfig)
.def_property("enable_chunked_context", &tle::ExecutorConfig::getEnableChunkedContext,
&tle::ExecutorConfig::setEnableChunkedContext)
.def_property("normalize_log_probs", &tle::ExecutorConfig::getNormalizeLogProbs,
&tle::ExecutorConfig::setNormalizeLogProbs)
.def_property("iter_stats_max_iterations", &tle::ExecutorConfig::getIterStatsMaxIterations,
&tle::ExecutorConfig::setIterStatsMaxIterations)
.def_property("request_stats_max_iterations", &tle::ExecutorConfig::getRequestStatsMaxIterations,
&tle::ExecutorConfig::setRequestStatsMaxIterations)
.def_property("batching_type", &tle::ExecutorConfig::getBatchingType, &tle::ExecutorConfig::setBatchingType)
.def_property(
"parallel_config", &tle::ExecutorConfig::getParallelConfig, &tle::ExecutorConfig::setParallelConfig)
.def_property(
"peft_cache_config", &tle::ExecutorConfig::getPeftCacheConfig, &tle::ExecutorConfig::setPeftCacheConfig)
.def_property("logits_post_processor_config", &tle::ExecutorConfig::getLogitsPostProcessorConfig,
&tle::ExecutorConfig::setLogitsPostProcessorConfig)
.def_property(
"decoding_config", &tle::ExecutorConfig::getDecodingConfig, &tle::ExecutorConfig::setDecodingConfig)
.def_property("gpu_weights_percent", &tle::ExecutorConfig::getGpuWeightsPercent,
&tle::ExecutorConfig::setGpuWeightsPercent)
.def_property("max_queue_size", &tle::ExecutorConfig::getMaxQueueSize, &tle::ExecutorConfig::setMaxQueueSize)
.def_property("extended_runtime_perf_knob_config", &tle::ExecutorConfig::getExtendedRuntimePerfKnobConfig,
&tle::ExecutorConfig::setExtendedRuntimePerfKnobConfig)
.def_property("debug_config", &tle::ExecutorConfig::getDebugConfig, &tle::ExecutorConfig::setDebugConfig)
.def_property(
"recv_poll_period_ms", &tle::ExecutorConfig::getRecvPollPeriodMs, &tle::ExecutorConfig::setRecvPollPeriodMs)
.def_property("max_seq_idle_microseconds", &tle::ExecutorConfig::getMaxSeqIdleMicroseconds,
&tle::ExecutorConfig::setMaxSeqIdleMicroseconds)
.def(py::pickle(executorConfigGetState, executorConfigSetState));
tensorrt_llm::pybind::executor::Executor::initBindings(m);
}
} // namespace tensorrt_llm::pybind::executor