TensorRT-LLMs/cpp/tests/kernels/sampling/samplingTest.cpp
Kaiyu Xie 75057cd036
Update TensorRT-LLM (#2333)
* Update TensorRT-LLM

---------

Co-authored-by: Puneesh Khanna <puneesh.khanna@tii.ae>
Co-authored-by: Ethan Zhang <26497102+ethnzhng@users.noreply.github.com>
2024-10-15 15:28:40 +08:00

417 lines
19 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tests/kernels/sampling/samplingTest.h"
namespace tensorrt_llm::tests::kernels::sampling
{
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
namespace tk = tensorrt_llm::kernels;
namespace trk = tensorrt_llm::runtime::kernels;
template <typename T>
void SamplingKernelTest<T>::SetUp()
{
mStream = std::make_shared<tensorrt_llm::runtime::CudaStream>();
mBufferManager = std::make_shared<tensorrt_llm::runtime::BufferManager>(mStream);
auto const device = tc::getDevice();
cudaGetDeviceProperties(&mDeviceProp, device);
}
template <typename T>
void SamplingKernelTest<T>::TearDown()
{
}
template <typename T>
void SamplingKernelTest<T>::allocateBuffers(SamplingKernelTestParam const& param)
{
auto const batchSize = param.batchSize;
auto const maxBatchSize = 2 * batchSize;
auto const vocabSize = param.vocabSize;
auto const maxTokensPerStep = param.maxTokensPerStep;
auto const dataType = TRTDataType<T>::value;
auto const ptrType = TRTDataType<T*>::value;
// Allocate GPU data
mSeqLengthsHost = BufferManager::pinned(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kINT32);
mSeqLengthsDevice = mBufferManager->gpu(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kINT32);
mFinishedHost = BufferManager::pinned(
ITensor::makeShape({maxBatchSize}), TRTDataType<tk::FinishedState::UnderlyingType>::value);
mFinishedDevice = mBufferManager->gpu(
ITensor::makeShape({maxBatchSize}), TRTDataType<tk::FinishedState::UnderlyingType>::value);
mOutputIdsHost = BufferManager::pinned(ITensor::makeShape({maxBatchSize, mMaxSeqLen}), nvinfer1::DataType::kINT32);
mOutputIdsDevice = mBufferManager->gpu(ITensor::makeShape({maxBatchSize, mMaxSeqLen}), nvinfer1::DataType::kINT32);
mProbsHost = BufferManager::pinned(ITensor::makeShape({batchSize, maxTokensPerStep, vocabSize}), dataType);
mProbsDevice = mBufferManager->gpu(ITensor::makeShape({batchSize, maxTokensPerStep, vocabSize}), dataType);
mProbsPtrsDevice
= BufferManager::pinned(ITensor::makeShape({batchSize, maxTokensPerStep}), nvinfer1::DataType::kINT64);
mCumLogProbsDevice = mBufferManager->gpu(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kFLOAT);
mOutputLogProbsDevice
= mBufferManager->gpu(ITensor::makeShape({mMaxSeqLen, maxBatchSize}), nvinfer1::DataType::kFLOAT);
mZeroParentIdsDevice
= mBufferManager->gpu(ITensor::makeShape({maxBatchSize, maxTokensPerStep}), nvinfer1::DataType::kINT32);
mLogitsHost = BufferManager::pinned(ITensor::makeShape({batchSize, maxTokensPerStep, vocabSize}), dataType);
mLogProbsHost = BufferManager::pinned(ITensor::makeShape({batchSize, maxTokensPerStep, vocabSize}), dataType);
mIdsPtrHost = BufferManager::pinned(ITensor::makeShape({2 * maxBatchSize}), ptrType);
mEndIdsHost = BufferManager::pinned(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kINT32);
mEndIdsDevice = mBufferManager->gpu(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kINT32);
mTopPsHost = BufferManager::pinned(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kFLOAT);
mTopPsDevice = mBufferManager->gpu(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kFLOAT);
mTopKsHost = BufferManager::pinned(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kINT32);
mTopKsDevice = mBufferManager->gpu(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kINT32);
mSkipDecodeHost = BufferManager::pinned(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kBOOL);
mSkipDecodeDevice = mBufferManager->gpu(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kBOOL);
mTokensPerStep = BufferManager::pinned(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kINT32);
mBatchSlots = BufferManager::pinned(ITensor::makeShape({batchSize}), nvinfer1::DataType::kINT32);
mExpectedCumLogProbsHost = BufferManager::pinned(ITensor::makeShape({maxBatchSize}), nvinfer1::DataType::kFLOAT);
mCurandStatesDevice
= mBufferManager->gpu(ITensor::makeShape({maxBatchSize, sizeof(curandState_t)}), nvinfer1::DataType::kINT8);
}
template <typename T>
void SamplingKernelTest<T>::setupBuffers(SamplingKernelTestParam const& param)
{
auto const batchSize = param.batchSize;
auto const maxBatchSize = 2 * batchSize;
auto const vocabSize = param.vocabSize;
auto const maxTokensPerStep = param.maxTokensPerStep;
auto const topK = param.topK;
auto const topP = param.topP;
// TopK == 0 case (TopP kernel)
auto const topKDistUpperBound = std::max(topK, static_cast<unsigned int>(1));
std::mt19937 gen(42);
auto* batchSlotsPtr = bufferCast<int32_t>(*mBatchSlots);
auto probsPtr = BufferRange<T*>(*mProbsPtrsDevice);
auto probsDevicePtr = bufferCast<T>(*mProbsDevice);
for (SizeType32 bi = 0; bi < batchSize; ++bi)
{
batchSlotsPtr[bi] = 2 * bi;
for (SizeType32 ti = 0; ti < maxTokensPerStep; ++ti)
{
probsPtr[bi * maxTokensPerStep + ti] = probsDevicePtr + bi * maxTokensPerStep * vocabSize + ti * vocabSize;
}
}
// Allocate and init curand states
tk::invokeCurandInitialize(reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice)),
batchSlotsPtr, batchSize, mSeed, mStream->get());
std::uniform_int_distribution<> endIdsDistr(
0, vocabSize - 1); // -1 because uniform_int_distribution generates closed interval
std::uniform_real_distribution<> skipDecodeDist(0, 1);
std::uniform_real_distribution<> topPDist(0, topP);
std::uniform_int_distribution<> topKDist(1, topKDistUpperBound);
std::uniform_int_distribution<> tokensPerStepDist(1, maxTokensPerStep);
std::uniform_int_distribution<> seqLenDist(0, mMaxSeqLen - maxTokensPerStep);
std::uniform_real_distribution<> logProbDist(-3.f, 3.f);
std::uniform_real_distribution<> finishedDist(0, 1);
// Init by zero.
trk::invokeFill(*mFinishedDevice, uint8_t{0}, *mStream);
trk::invokeFill(*mOutputLogProbsDevice, float{0.0f}, *mStream);
trk::invokeFill(*mZeroParentIdsDevice, int32_t{0}, *mStream);
trk::invokeFill(*mOutputIdsDevice, int32_t{0}, *mStream);
// Init topK, topP and endIds for each request in batch
auto skipDecodeHostPtr = bufferCast<bool>(*mSkipDecodeHost);
auto topPsHostPtr = bufferCast<float>(*mTopPsHost);
auto topKsHostPtr = bufferCast<int32_t>(*mTopKsHost);
auto endIdsHostPtr = bufferCast<int32_t>(*mEndIdsHost);
auto tokensPerStepPtr = bufferCast<int32_t>(*mTokensPerStep);
auto finishedHostPtr
= reinterpret_cast<tk::FinishedState*>(bufferCast<tk::FinishedState::UnderlyingType>(*mFinishedHost));
for (SizeType32 bi = 0; bi < maxBatchSize; ++bi)
{
endIdsHostPtr[bi] = endIdsDistr(gen);
skipDecodeHostPtr[bi] = skipDecodeDist(gen) > 0.8;
topPsHostPtr[bi] = topPDist(gen);
topKsHostPtr[bi] = topK == 0 ? 0 : topKDist(gen);
tokensPerStepPtr[bi] = tokensPerStepDist(gen);
finishedHostPtr[bi] = finishedDist(gen) > 0.8 ? tk::FinishedState::finished() : tk::FinishedState::empty();
}
mMaxTopK = topK;
mMaxTopP = topP;
TLLM_CHECK(mMaxTopK * maxTokensPerStep <= mMaxSeqLen);
// Setup pointers to output ids for each request in batch
auto idsPtrHostPtr = BufferRange<void*>(*mIdsPtrHost);
auto outputIdsDevicePtr = bufferCast<int32_t>(*mOutputIdsDevice);
auto zeroParentIdsDevicePtr = bufferCast<int32_t>(*mZeroParentIdsDevice);
auto seqLensHostPtr = bufferCast<int32_t>(*mSeqLengthsHost);
auto logProbHostPtr = bufferCast<float>(*mExpectedCumLogProbsHost);
for (SizeType32 bi = 0; bi < maxBatchSize; bi++)
{
idsPtrHostPtr[bi] = outputIdsDevicePtr + bi * mMaxSeqLen;
idsPtrHostPtr[maxBatchSize + bi] = zeroParentIdsDevicePtr + bi * mMaxSeqLen;
}
for (SizeType32 bi = 0; bi < maxBatchSize; bi++)
{
seqLensHostPtr[bi] = seqLenDist(gen);
logProbHostPtr[bi] = logProbDist(gen);
}
mBufferManager->copy(*mEndIdsHost, *mEndIdsDevice);
mBufferManager->copy(*mSkipDecodeHost, *mSkipDecodeDevice);
mBufferManager->copy(*mTopPsHost, *mTopPsDevice);
mBufferManager->copy(*mTopKsHost, *mTopKsDevice);
mBufferManager->copy(*mSeqLengthsHost, *mSeqLengthsDevice);
mBufferManager->copy(*mExpectedCumLogProbsHost, *mCumLogProbsDevice);
mBufferManager->copy(*mFinishedHost, *mFinishedDevice);
// Init logits randomly
auto logitsHostPtr = bufferCast<T>(*mLogitsHost);
initRandom(logitsHostPtr, batchSize * maxTokensPerStep * vocabSize, -3.0f, 3.0f);
// Only in greedy search we can guarantee the selected token and stop by condition
// TopK == 1 for TopK kernel greedy, TopK == 0 for TopP kernels
if (topK <= 1)
{
for (SizeType32 bi = 0; bi < batchSize; ++bi)
{
auto const batchSlot = batchSlotsPtr[bi];
for (int32_t ti = 0; ti < maxTokensPerStep; ++ti)
{
// Set logit of the endId for the finished request to the value above others
// NOTE that we can guarantee finish only in greedy search
logitsHostPtr[(bi * maxTokensPerStep + ti) * vocabSize + endIdsHostPtr[batchSlot]] = 4.0f;
}
}
}
// Compute probabilities for each token
computeProb(bufferCast<T>(*mProbsHost), logitsHostPtr, batchSize * maxTokensPerStep, vocabSize);
mBufferManager->copy(*mProbsHost, *mProbsDevice);
}
template <typename T>
std::vector<SizeType32> SamplingKernelTest<T>::computeTopKTopPVariants(
int32_t bi, int32_t batchSlot, int32_t ti, int32_t maxTokensPerStep, int32_t vocabSize)
{
std::vector<SizeType32> allowedTokens;
auto probsPtr = bufferCast<T>(*mProbsHost) + (bi * maxTokensPerStep + ti) * vocabSize;
std::vector<SizeType32> indices(vocabSize);
std::iota(indices.begin(), indices.end(), 0);
std::sort(indices.begin(), indices.end(),
[probsPtr](SizeType32 i1, SizeType32 i2) { return probsPtr[i1] > probsPtr[i2]; });
auto topK = bufferCast<int32_t>(*mTopKsHost)[batchSlot];
auto topP = bufferCast<float>(*mTopPsHost)[batchSlot];
if (topK > 0) // handling top K kernel, top P result based on topK tokens
{
float sSum = 0.f; // sSum as in samplingTopKKernels.cu
for (auto ki = 0; ki < topK; ki++)
{
sSum += static_cast<float>(probsPtr[indices[ki]]);
}
topP *= sSum; // the adjusted topP in the selected topK distribution
}
float totalProb = 0.f;
SizeType32 idx = 0;
while (totalProb < topP && idx < vocabSize)
{
allowedTokens.push_back(indices[idx]);
totalProb += static_cast<float>(probsPtr[indices[idx++]]);
// cuda may selected a different index with same probability in kernel reduce, in test we allow them
while (idx < vocabSize
&& static_cast<float>(probsPtr[indices[idx]]) == static_cast<float>(probsPtr[indices[idx - 1]]))
{
allowedTokens.push_back(indices[idx]);
totalProb += static_cast<float>(probsPtr[indices[idx++]]);
}
}
return allowedTokens;
}
template <typename T>
void SamplingKernelTest<T>::verifyResult(SamplingKernelTestParam const& param)
{
auto const batchSize = param.batchSize;
auto const vocabSize = param.vocabSize;
auto const maxTokensPerStep = param.maxTokensPerStep;
auto const outputIdsHost = mBufferManager->copyFrom(*mOutputIdsDevice, MemoryType::kCPU);
auto const seqLenHost = mBufferManager->copyFrom(*mSeqLengthsDevice, MemoryType::kCPU);
auto const finishedHost = mBufferManager->copyFrom(*mFinishedDevice, MemoryType::kCPU);
auto const cumLogProbsHost = mBufferManager->copyFrom(*mCumLogProbsDevice, MemoryType::kCPU);
// Synchronize to get valid data on Host
mStream->synchronize();
// Compute reference.
computeLogProb(bufferCast<T>(*mLogProbsHost), bufferCast<T>(*mLogitsHost), batchSize * maxTokensPerStep, vocabSize);
auto const batchSlotsPtr = bufferCast<int32_t>(*mBatchSlots);
auto const outputIdsHostPtr = bufferCast<int32_t>(*outputIdsHost);
auto const seqLengthsHostPtr = bufferCast<int32_t>(*seqLenHost);
auto const finishedHostPtr
= reinterpret_cast<tk::FinishedState*>(bufferCast<tk::FinishedState::UnderlyingType>(*finishedHost));
auto const outputIdsOrigHostPtr = bufferCast<int32_t>(*mOutputIdsHost);
auto const seqLengthsOrigHostPtr = bufferCast<int32_t>(*mSeqLengthsHost);
auto const finishedOrigHostPtr
= reinterpret_cast<tk::FinishedState*>(bufferCast<tk::FinishedState::UnderlyingType>(*mFinishedHost));
auto const logProbsHostPtr = bufferCast<T>(*mLogProbsHost);
auto const endIdsHostPtr = bufferCast<int32_t>(*mEndIdsHost);
auto const skipDecodeHostPtr = bufferCast<bool>(*mSkipDecodeHost);
auto const tokensPerStepPtr = bufferCast<int32_t>(*mTokensPerStep);
auto const expectedCumLogProbsHostPtr = bufferCast<float>(*mExpectedCumLogProbsHost);
for (SizeType32 bi = 0; bi < batchSize; ++bi)
{
auto const batchSlot = batchSlotsPtr[bi];
auto const tokensPerStep = tokensPerStepPtr[batchSlot];
for (SizeType32 ti = 0; ti < tokensPerStep; ++ti)
{
auto topK = bufferCast<int32_t>(*mTopKsHost)[batchSlot];
auto kResults = param.returnAllSelectedTokens ? (topK == 0 ? vocabSize : topK) : 1;
auto topKTopPVariants = computeTopKTopPVariants(bi, batchSlot, ti, maxTokensPerStep, vocabSize);
SizeType32 ki;
for (ki = 0; ki < kResults && ki < topKTopPVariants.size(); ++ki)
{
// Set reference finished state to true if we finished before or at current step
auto const idsIdx
= param.returnAllSelectedTokens ? ti * mMaxTopK + ki : seqLengthsOrigHostPtr[batchSlot] + ti;
auto const outputId = outputIdsHostPtr[batchSlot * mMaxSeqLen + idsIdx];
// Check the range of the returned token ([0, vocabSize))
EXPECT_TRUE((outputId >= 0) && (outputId < vocabSize));
bool const generatedEOS = outputId == endIdsHostPtr[batchSlot];
// If decoding for this batch is skipped ignore cumLog calculation
if (!skipDecodeHostPtr[batchSlot] && !finishedOrigHostPtr[batchSlot].isFinished()
&& !finishedOrigHostPtr[batchSlot].isSkipDecoding())
{
if (maxTokensPerStep == 1 && !param.returnAllSelectedTokens)
{
if (generatedEOS)
{
EXPECT_EQ(seqLengthsHostPtr[batchSlot], seqLengthsOrigHostPtr[batchSlot]);
EXPECT_TRUE(finishedHostPtr[batchSlot].isFinished());
}
else
{
EXPECT_EQ(seqLengthsHostPtr[batchSlot], seqLengthsOrigHostPtr[batchSlot] + tokensPerStep);
EXPECT_EQ(
finishedHostPtr[batchSlot].isFinished(), finishedOrigHostPtr[batchSlot].isFinished());
}
}
bool found = false;
for (auto const& var : topKTopPVariants)
{
if (outputId == var)
{
found = true;
break;
}
}
EXPECT_TRUE(found) << "Incorrect output id token";
// Compute reference cumLogProb by summing all logProbs up to the stop token
expectedCumLogProbsHostPtr[batchSlot]
+= static_cast<float>(logProbsHostPtr[bi * vocabSize + outputId]);
}
else
{
// Check that tensors are not modified
auto const idsIdx = batchSlot * mMaxSeqLen + seqLengthsOrigHostPtr[batchSlot] + ti;
EXPECT_EQ(outputId, outputIdsOrigHostPtr[idsIdx]);
EXPECT_EQ(seqLengthsHostPtr[batchSlot], seqLengthsOrigHostPtr[batchSlot]);
EXPECT_EQ(finishedHostPtr[batchSlot].isFinished(), finishedOrigHostPtr[batchSlot].isFinished());
}
}
// a boundary check for returnAllSelectedTokens in topP kernel and when TopP selected indices < topK in topK
// kernel.
if (!skipDecodeHostPtr[batchSlot] && !finishedOrigHostPtr[batchSlot].isFinished()
&& !finishedOrigHostPtr[batchSlot].isSkipDecoding())
{
if (param.returnAllSelectedTokens && (topK == 0 || ki != topK))
{
auto const idsIdx = ti * mMaxTopK + ki;
auto const outputId = outputIdsHostPtr[batchSlot * mMaxSeqLen + idsIdx];
EXPECT_EQ(outputId, -1);
}
}
}
}
// Cum log probs is not supported for multiple tokens per step or all top K return
if (maxTokensPerStep == 1 && !param.returnAllSelectedTokens)
{
for (int32_t bi = 0; bi < batchSize; ++bi)
{
auto* batchSlotsPtr = bufferCast<int32_t>(*mBatchSlots);
auto const batchSlot = batchSlotsPtr[bi];
bool passed = checkResult("cum log probs", bufferCast<float>(*cumLogProbsHost) + batchSlot,
bufferCast<float>(*mExpectedCumLogProbsHost) + batchSlot, 1);
EXPECT_TRUE(passed);
}
}
}
template <typename T>
void SamplingKernelTest<T>::runTest(SamplingKernelTestParam const& param)
{
// Allocate buffers
allocateBuffers(param);
// Setup buffers
setupBuffers(param);
// Retrieve the workspace size of the sampling kernel.
auto const workspaceSize = getWorkspaceSize(param);
TensorPtr workspaceDevice
= mBufferManager->gpu(ITensor::makeShape({static_cast<int32_t>(workspaceSize)}), nvinfer1::DataType::kINT8);
// Call tested function sampling
callTestedFunction(param, workspaceDevice);
// Verify results
verifyResult(param);
}
template class SamplingKernelTest<float>;
template class SamplingKernelTest<half>;
} // namespace tensorrt_llm::tests::kernels::sampling