TensorRT-LLMs/cpp/tests/layers/baseSamplingLayerTest.cpp
Kaiyu Xie 75057cd036
Update TensorRT-LLM (#2333)
* Update TensorRT-LLM

---------

Co-authored-by: Puneesh Khanna <puneesh.khanna@tii.ae>
Co-authored-by: Ethan Zhang <26497102+ethnzhng@users.noreply.github.com>
2024-10-15 15:28:40 +08:00

243 lines
9.8 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tests/layers/baseSamplingLayerTest.h"
namespace tensorrt_llm::tests::layers::sampling
{
using namespace tensorrt_llm::runtime;
using namespace tensorrt_llm::layers;
using namespace tensorrt_llm::common;
namespace tk = tensorrt_llm::kernels;
namespace trk = tensorrt_llm::runtime::kernels;
template <typename T>
void BaseSamplingLayerTest<T>::setup(uint64_t seed, TestSamplingParams const& params)
{
auto const dataType = TRTDataType<T>::value;
auto const ptrType = TRTDataType<T*>::value;
// clang-format off
// prob = (0.0, 0.0, 0.0, 0.0, 0.4, 0.3, 0.2, 0.1)
mTestLogitsInit = {
-FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX, -0.9163, -1.2040, -1.6094, -2.3026, // step 0
-0.9163, -1.2040, -1.6094, -2.3026, -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX, // step 1
-FLT_MAX, -FLT_MAX, -0.9163, -1.2040, -1.6094, -2.3026, -FLT_MAX, -FLT_MAX, // step 2
-0.9163, -1.2040, -1.6094, -2.3026, -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX // step 3
};
// clang-format on
if (mComputeProbs)
{
computeProb(mTestLogitsInit.data(), mTestLogitsInit.data(), 4, mVocabSize);
}
mSeqLengthsDevice = mBufferManager->gpu(ITensor::makeShape({mMaxBatchSize}), nvinfer1::DataType::kINT32);
mContextLengthDevice = mBufferManager->gpu(ITensor::makeShape({mMaxBatchSize}), nvinfer1::DataType::kINT32);
mFinishedDevice = mBufferManager->gpu(
ITensor::makeShape({mMaxBatchSize}), TRTDataType<tk::FinishedState::UnderlyingType>::value);
mOutputIdsDevice = mBufferManager->gpu(ITensor::makeShape({mMaxBatchSize, mMaxSeqLen}), nvinfer1::DataType::kINT32);
mEndIdsDevice = mBufferManager->gpu(ITensor::makeShape({mMaxBatchSize}), nvinfer1::DataType::kINT32);
mIdsPtrHost = mBufferManager->pinned(ITensor::makeShape({mMaxBatchSize}), ptrType);
mCumLogProbsDevice = mBufferManager->gpu(ITensor::makeShape({mMaxBatchSize}), nvinfer1::DataType::kFLOAT);
mOutputLogProbsDevice
= mBufferManager->gpu(ITensor::makeShape({mMaxBatchSize, mMaxSeqLen}), nvinfer1::DataType::kFLOAT);
mBatchSlots = mBufferManager->pinned(ITensor::makeShape({mBatchSize}), nvinfer1::DataType::kINT32);
mCurandStatesDevice
= mBufferManager->gpu(ITensor::makeShape({mMaxBatchSize, sizeof(curandState_t)}), nvinfer1::DataType::kINT8);
auto const workspaceSize = mSamplingLayer->getWorkspaceSize();
trk::invokeFill(*mSeqLengthsDevice, int32_t{0}, *mStream);
trk::invokeFill(*mContextLengthDevice, int32_t{0}, *mStream);
trk::invokeFill(*mFinishedDevice, uint8_t{0}, *mStream);
trk::invokeFill(*mOutputIdsDevice, int32_t{0}, *mStream);
trk::invokeFill(*mCumLogProbsDevice, float{0.0f}, *mStream);
trk::invokeFill(*mOutputLogProbsDevice, float{0.0f}, *mStream);
trk::invokeFill(*mEndIdsDevice, int32_t{mEndId}, *mStream);
tk::invokeCurandInitialize(reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice)), nullptr,
mMaxBatchSize, seed, mStream->get());
auto batchSlotsPtr = bufferCast<int32_t>(*mBatchSlots);
for (SizeType32 bi = 0; bi < mBatchSize; ++bi)
{
batchSlotsPtr[bi] = 2 * bi;
}
auto idsPtrHostPtr = BufferRange<void*>(*mIdsPtrHost);
auto outputIdsDevicePtr = bufferCast<int32_t>(*mOutputIdsDevice);
for (SizeType32 bi = 0; bi < mMaxBatchSize; bi++)
{
idsPtrHostPtr[bi] = outputIdsDevicePtr + bi * mMaxSeqLen;
}
auto setupParams = std::make_shared<SamplingSetupParams>();
setupParams->randomSeed = std::make_optional<std::vector<uint64_t>>({seed});
setupParams->runtimeTopK
= params.topKs.size() ? std::make_optional<std::vector<SizeType32>>(params.topKs) : std::nullopt;
setupParams->runtimeTopP
= params.topPs.size() ? std::make_optional<std::vector<float>>(params.topPs) : std::nullopt;
setupParams->topPDecay = params.decay.size() ? std::make_optional<std::vector<float>>(params.decay) : std::nullopt;
setupParams->topPMin
= params.minTopP.size() ? std::make_optional<std::vector<float>>(params.minTopP) : std::nullopt;
setupParams->topPResetIds
= params.topPResetIds.size() ? std::make_optional<std::vector<int32_t>>(params.topPResetIds) : std::nullopt;
mDecodingWorkspace->setDeviceBatchSlots(mBatchSlots);
mDecodingWorkspace->getDeviceRuntimeLogits()->reshape(ITensor::makeShape({mBatchSize, mVocabSize}));
mSamplingLayer->setup(mBatchSize, mBeamWidth, mBatchSlots, setupParams, mDecodingWorkspace);
mStream->synchronize();
}
template <typename T>
std::shared_ptr<SamplingInputs> BaseSamplingLayerTest<T>::createInputTensors(int32_t step)
{
constexpr int32_t ite = 0;
auto decodeInputTensors = std::make_shared<SamplingInputs>(mEndIdsDevice, mBatchSlots, step, ite, mBatchSize);
decodeInputTensors->logits = mDecodingWorkspace->getDeviceRuntimeLogits();
decodeInputTensors->inputLengths = mContextLengthDevice;
decodeInputTensors->finished = mFinishedDevice;
decodeInputTensors->probsComputed = mComputeProbs;
decodeInputTensors->curandStates = reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice));
return decodeInputTensors;
}
template <typename T>
std::shared_ptr<BaseDecodingOutputs> BaseSamplingLayerTest<T>::createOutputTensors()
{
auto decodeOutputs = std::make_shared<BaseDecodingOutputs>(mOutputIdsDevice);
decodeOutputs->outputIdsPtr = mIdsPtrHost;
decodeOutputs->sequenceLength = mSeqLengthsDevice;
decodeOutputs->finished = mFinishedDevice;
decodeOutputs->outputLogProbs = mOutputLogProbsDevice;
decodeOutputs->cumLogProbs = mCumLogProbsDevice;
// TODO(nkorobov): check log probs and cum_log_probs
return decodeOutputs;
}
template <typename T>
void BaseSamplingLayerTest<T>::batchCopy(int32_t step)
{
auto const logitsHost = ITensor::wrap(
mTestLogitsInit.data() + step * mVocabSize, TRTDataType<T>::value, ITensor::makeShape({1, mVocabSize}));
for (int32_t bi = 0; bi < mBatchSize; ++bi)
{
auto logitsDeviceView = ITensor::slice(mDecodingWorkspace->getDeviceRuntimeLogits(), bi, 1);
mBufferManager->copy(*logitsHost, *logitsDeviceView);
}
}
template <typename T>
bool BaseSamplingLayerTest<T>::checkResult(int32_t* outputIds, std::vector<std::set<int32_t>>& expectedIds)
{
assert(expectedIds.size() == mMaxSeqLen * mBatchBeam);
int failures = 0;
auto* const batchSlotsPtr = bufferCast<int32_t>(*mBatchSlots);
for (int32_t i = 0; i < mMaxSeqLen * mBatchBeam; ++i)
{
int32_t s = i / mBatchBeam;
int32_t b = i % mBatchBeam;
auto const batchSlot = batchSlotsPtr[b];
std::set<int32_t> expts = expectedIds.at(i);
auto const outputId = outputIds[batchSlot * mMaxSeqLen + s];
if (expts.count(outputId) == 0)
{
if (failures < 10)
{
std::stringstream ss;
ss << " - Fail "
<< " (step=" << s << ", batch=" << b << ") "
<< "actual=" << outputId << ", expected";
for (auto const& expt : expts)
{
ss << " " << expt;
}
TLLM_LOG_DEBUG("%s", ss.str().c_str());
}
++failures;
}
}
TLLM_LOG_DEBUG(
"check...%6s : failures: %d / %d", failures == 0 ? "....OK" : "FAILED", failures, mMaxSeqLen * mBatchBeam);
return failures == 0;
}
template <typename T>
void BaseSamplingLayerTest<T>::runTest(
std::vector<std::set<int32_t>> expectedOutputIds, TestSamplingParams const& params, int32_t endId)
{
initLayer(params);
auto const decoderDomain
= tensorrt_llm::layers::DecoderDomain(mMaxBatchSize, mBeamWidth, mVocabSize, mVocabSizePadded);
mDecodingWorkspace = std::make_unique<tensorrt_llm::runtime::DecodingLayerWorkspace>(
mBufferManager, decoderDomain, TRTDataType<T>::value, mSamplingLayer->getWorkspaceSize());
mEndId = endId;
for (uint64_t seed = 0; seed < mMaxSeed; ++seed)
{
setup(seed, params);
int32_t step = mMaxInputLen;
auto inputTensors = createInputTensors(step);
auto outputTensors = createOutputTensors();
for (step = mMaxInputLen; step < mMaxOutputLen; ++step)
{
// Reset by the test value since the sampling layer internally updates the logit buffer.
batchCopy(step);
inputTensors->step = step;
mDecodingWorkspace->setDeviceBatchSlots(mBatchSlots);
mSamplingLayer->forwardAsync(outputTensors, inputTensors, mDecodingWorkspace);
mStream->synchronize();
}
auto const outputIdsHost = mBufferManager->copyFrom(*mOutputIdsDevice, tensorrt_llm::runtime::MemoryType::kCPU);
mStream->synchronize();
bool passed = checkResult(bufferCast<int32_t>(*outputIdsHost), expectedOutputIds);
EXPECT_TRUE(passed) << "Output ids check failed at seed " << seed;
if (!passed)
{
std::stringstream ss;
ss << "Actual output ids:" << std::endl << *outputIdsHost;
TLLM_LOG_DEBUG(ss.str());
}
}
}
template class BaseSamplingLayerTest<float>;
template class BaseSamplingLayerTest<half>;
} // namespace tensorrt_llm::tests::layers::sampling