TensorRT-LLMs/cpp/tensorrt_llm/runtime/gptDecoderBatched.cpp
QI JUN 75495730bc
Revert "refactor: Replace DecoderFinishedEvent with CudaEvent in decoder clas…" (#3183)
This reverts commit 3ee4332fb1.

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
2025-04-01 12:49:27 +08:00

408 lines
16 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/gptDecoderBatched.h"
#include "common.h"
#include "decoderState.h"
#include "iBuffer.h"
#include "tensorrt_llm/batch_manager/createNewDecoderRequests.h"
#include "tensorrt_llm/batch_manager/llmRequest.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/executor/types.h"
#include "tensorrt_llm/kernels/decodingKernels.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaEvent.h"
#include <algorithm>
#include <cassert>
#include <limits>
#include <memory>
#include <numeric>
#include <vector>
using namespace tensorrt_llm::runtime;
GptDecoderBatched::GptDecoderBatched(GptDecoderBatched::CudaStreamPtr stream,
SpeculativeDecodingMode const& speculativeDecodingMode, nvinfer1::DataType dtype)
: mRuntimeStream{std::move(stream)}
, mBufferManager{mRuntimeStream}
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mDecoderState = std::make_shared<decoder::DecoderState>(dtype, mBufferManager);
if (!speculativeDecodingMode.isNone())
{
mDecoderState->allocateSpeculativeDecodingBuffers(speculativeDecodingMode, dtype, mBufferManager);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::disableLookahead(
SizeType32 maxBatchSize, RequestVector const& genRequests, TensorPtr const& batchSlots)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mDecoderState->disableLookahead(maxBatchSize, genRequests);
std::vector<SamplingConfig> samplingConfigs;
samplingConfigs.reserve(genRequests.size());
auto batchSlotsRange = BufferRange<SizeType32>(*batchSlots);
SizeType32 batchIdx = 0;
for (auto const& llmReq : genRequests)
{
samplingConfigs.push_back(llmReq->mSamplingConfig);
batchSlotsRange[batchIdx] = llmReq->mSeqSlot.value();
batchIdx += 1;
}
auto const batchSize = batchIdx;
std::optional<SamplingConfig> samplingConfig;
if (batchSize > 0)
{
samplingConfig = SamplingConfig(samplingConfigs);
}
TensorPtr batchSlotsView = ITensor::slice(batchSlots, 0, batchSize);
mDecoder->disableLookahead(samplingConfig, batchSize, batchSlots);
CudaEvent event{};
mDecoderStream->record(event);
mRuntimeStream->wait(event);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::setup(executor::DecodingMode const& mode, SizeType32 maxBatchSize, SizeType32 maxBeamWidth,
SizeType32 maxAttentionWindow, SizeType32 sinkTokenLength, SizeType32 maxSequenceLength,
SizeType32 maxTokensPerEngineStep, nvinfer1::DataType dtype, ModelConfig const& modelConfig,
WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(maxBatchSize > 0);
TLLM_CHECK(maxBeamWidth > 0);
TLLM_CHECK(maxTokensPerEngineStep > 0);
TLLM_CHECK(maxSequenceLength > 0);
mDecoderState->setup(maxBatchSize, maxBeamWidth, maxAttentionWindow, sinkTokenLength, maxSequenceLength,
modelConfig, worldConfig, mBufferManager);
mDecoderState->setupSpeculativeDecoding(
mDecoderState->getSpeculativeDecodingMode(), maxTokensPerEngineStep, modelConfig, worldConfig, mBufferManager);
std::shared_ptr<SpeculativeDecodingModule const> speculativeDecodingModulePtr = nullptr;
if (mDecoderState->getSpeculativeDecodingMode().predictsDraftTokens())
{
speculativeDecodingModulePtr = modelConfig.getSpeculativeDecodingModulePtr();
}
auto const device = mRuntimeStream->getDevice();
mDecoderStream = std::make_shared<CudaStream>();
TLLM_CHECK(mDecoderStream->getDevice() == device);
auto const vocabSize = modelConfig.getVocabSize();
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
mDecoder = IGptDecoder::create(mode, dtype, maxBatchSize, maxBeamWidth, vocabSize, vocabSizePadded,
maxSequenceLength, mDecoderStream, speculativeDecodingModulePtr);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::setExplicitDraftTokensInputs(decoder_batch::Input const& input)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto explicitDraftTokensInputs = DecodingInput::ExplicitDraftTokensInputs();
TLLM_CHECK(input.explicitDraftTokensInputs.has_value());
TLLM_CHECK(input.explicitDraftTokensLastInputs.has_value());
explicitDraftTokensInputs.nextDraftTokens = input.explicitDraftTokensInputs->nextDraftTokens;
explicitDraftTokensInputs.nextFlatTokens = input.explicitDraftTokensInputs->nextFlatTokens;
explicitDraftTokensInputs.nextDraftIndices = input.explicitDraftTokensInputs->nextDraftIndices;
explicitDraftTokensInputs.nextDraftProbs = input.explicitDraftTokensInputs->nextDraftProbs;
explicitDraftTokensInputs.lastDraftTokens = input.explicitDraftTokensLastInputs->draftTokens;
explicitDraftTokensInputs.lastDraftIndices = input.explicitDraftTokensLastInputs->draftIndices;
explicitDraftTokensInputs.lastPositionIdsBase = input.explicitDraftTokensLastInputs->positionIdsBase;
explicitDraftTokensInputs.masks = input.explicitDraftTokensInputs->masks;
explicitDraftTokensInputs.packedPositionIds = input.explicitDraftTokensInputs->packedPositionIds;
explicitDraftTokensInputs.bestPathLengths = input.explicitDraftTokensInputs->bestPathLengths;
explicitDraftTokensInputs.bestPathIndices = input.explicitDraftTokensInputs->bestPathIndices;
explicitDraftTokensInputs.nextGenerationLengths = input.explicitDraftTokensInputs->nextGenerationLengths;
explicitDraftTokensInputs.lastGenerationLengths = input.explicitDraftTokensLastInputs->generationLengths;
explicitDraftTokensInputs.maxGenLengthDevice = input.explicitDraftTokensInputs->maxGenToken;
explicitDraftTokensInputs.seqSlots = input.batchSlotsRequestOrder;
mDecoderState->getJointDecodingInput().explicitDraftTokensInputs = explicitDraftTokensInputs;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::setEagleInputs(decoder_batch::Input const& input)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(input.eagleInputs.has_value());
TLLM_CHECK(input.eagleLastInputs.has_value());
auto eagleInputs = DecodingInput::EagleInputs(input.eagleInputs->nextDraftTokens, input.eagleInputs->nextDraftLens,
input.eagleInputs->nextDraftPaths, input.eagleLastInputs->draftTokens, input.eagleLastInputs->draftLens,
input.eagleLastInputs->draftPaths, input.eagleInputs->acceptedTokens, input.eagleInputs->acceptedLens,
input.eagleInputs->acceptedPaths, input.eagleInputs->chunkedContextNextTokens, input.batchSlotsRequestOrder);
mDecoderState->getJointDecodingInput().eagleInputs = eagleInputs;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
namespace
{
template <typename T>
T maxOfActiveSlots(std::vector<T> const& values, std::vector<bool> const& active)
{
return std::transform_reduce(
values.begin(), values.end(), active.begin(), std::numeric_limits<T>::min(),
[](auto lhf, auto rhs) { return std::max(lhf, rhs); },
[](auto numTokens, auto active) { return active ? numTokens : std::numeric_limits<T>::min(); });
}
} // namespace
void GptDecoderBatched::forwardDispatch(decoder_batch::Output& output, decoder_batch::Input const& input)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const maxDecodingEngineTokens
= maxOfActiveSlots(mDecoderState->getJointDecodingInput().numDecodingEngineTokens, input.active);
for (SizeType32 si = 0; si < maxDecodingEngineTokens; si += mDecoderState->getMaxDecodingDecoderTokens())
{
prepareForward(si, output, input);
if (mDecoderState->getJointDecodingInput().batchSize > 0)
{
mDecoder->forwardAsync(mDecoderState->getJointDecodingOutput(), mDecoderState->getJointDecodingInput());
}
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
GptDecoderBatched::DecoderFinishedEventPtr GptDecoderBatched::forwardAsync(
decoder_batch::Output& output, decoder_batch::Input const& input)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto eventStart = CudaEvent{};
mRuntimeStream->record(eventStart);
mDecoderStream->wait(eventStart.get());
forwardDispatch(output, input);
CudaEvent event{};
mDecoderStream->record(event);
mRuntimeStream->wait(event);
CudaEvent eventStop{};
mRuntimeStream->record(eventStop);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return std::make_unique<decoder_batch::DecoderFinishedEvent>(std::move(eventStop), input.active);
}
// TODO(rkobus): produce new input and output
void GptDecoderBatched::prepareForward(
SizeType32 step, decoder_batch::Output& output, decoder_batch::Input const& input)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const& allTargetLogits = input.logits;
auto const& jointOutputIdsShape = mDecoderState->getJointDecodingOutput().ids->getShape();
auto const maxBeamWidth = jointOutputIdsShape.d[1];
auto const speculativeDecodingMode = mDecoderState->getSpeculativeDecodingMode();
auto constexpr singleRequest = 1;
TLLM_CHECK(static_cast<SizeType32>(output.sequenceLengths->getSize())
== mDecoderState->getActualBatchSize() * maxBeamWidth);
// TODO should remove this reshape and set shape to [batch_size, beam_width] outside
TensorPtr sequenceLengths = ITensor::view(
output.sequenceLengths, ITensor::makeShape({mDecoderState->getActualBatchSize(), maxBeamWidth}));
TLLM_CHECK(sequenceLengths);
auto& dInput = mDecoderState->getJointDecodingInput();
auto& dOutput = mDecoderState->getJointDecodingOutput();
if (maxBeamWidth > 1)
{
dInput.cacheIndirection = input.cacheIndirection;
dOutput.cacheIndirection = output.cacheIndirection;
}
if (speculativeDecodingMode.isExplicitDraftTokens())
{
setExplicitDraftTokensInputs(input);
}
else if (speculativeDecodingMode.isEagle())
{
setEagleInputs(input);
}
TensorPtr batchSlotsSlice = ITensor::at(input.batchSlots, {step});
auto batchSlotsRange = BufferRange<SizeType32>(*batchSlotsSlice);
SizeType32 localBatchDecoderIdx = 0;
std::vector<SharedConstPtr> logitsVec;
for (SizeType32 bi = 0; bi < mDecoderState->getActualBatchSize(); ++bi)
{
if (!input.active.at(bi) || step >= mDecoderState->getJointDecodingInput().numDecodingEngineTokens.at(bi))
{
continue;
}
batchSlotsRange[localBatchDecoderIdx] = bi;
localBatchDecoderIdx++;
auto const& targetLogits = allTargetLogits[bi];
TensorPtr logitsSlice = ITensor::slice(targetLogits, step, singleRequest);
logitsVec.push_back(logitsSlice);
}
batchSlotsSlice->resize(localBatchDecoderIdx);
dInput.batchSlots = batchSlotsSlice;
dInput.batchSize = localBatchDecoderIdx;
dInput.logitsVec = logitsVec;
auto const maxDecodingEngineTokens
= maxOfActiveSlots(mDecoderState->getJointDecodingInput().numDecodingEngineTokens, input.active);
TensorPtr finishedStepsInput = ITensor::slice(mDecoderState->getFinishedSteps(), step, 1);
TensorPtr finishedStepsOutput
= ITensor::slice(mDecoderState->getFinishedSteps(), std::min(maxDecodingEngineTokens - 1, step + 1), 1);
finishedStepsInput->squeeze(0);
finishedStepsOutput->squeeze(0);
TensorPtr newTokensStepView
= ITensor::slice(dOutput.newTokensSteps, step, mDecoderState->getMaxDecodingDecoderTokens());
dInput.finishReasons = finishedStepsInput;
if (speculativeDecodingMode.isMedusa())
{
dInput.medusaInputs->medusaLogits = input.predictedDraftLogits;
}
if (speculativeDecodingMode.isDraftTokensExternal())
{
dInput.externalDraftTokensInputs->step = step;
// WAR: reset finished state for generation requests
if (step == 0)
{
BufferManager manager{mDecoderStream};
for (SizeType32 bi = 0; bi < mDecoderState->getActualBatchSize(); ++bi)
{
if (!input.active.at(bi))
{
continue;
}
TensorPtr finishedStepsView = ITensor::slice(mDecoderState->getFinishedSteps(), 0, 1);
finishedStepsView->squeeze(0);
auto batchSlot = bi;
TensorPtr finishedSteps = ITensor::slice(finishedStepsView, batchSlot, 1);
manager.setZero(*finishedStepsView);
}
}
}
dOutput.newTokens = newTokensStepView;
dOutput.finishReasons = finishedStepsOutput;
dOutput.lengths = sequenceLengths;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::forward(decoder_batch::Output& output, decoder_batch::Input const& input)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto decoderFinishEvent = forwardAsync(output, input);
decoderFinishEvent->event.synchronize();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
namespace
{
std::pair<DecodingInput, DecodingOutput> prepareGatherTree(
decoder::DecoderState const& decoderState, SizeType32 batchSlot, bool streaming, CudaStream const& stream)
{
auto& dJointInput = decoderState.getJointDecodingInput();
auto& dJointOutput = decoderState.getJointDecodingOutput();
auto slice = [batchSlot](auto& a, auto const& b)
{
if (b && b->getShape().d[0] > 0)
{
a = ITensor::slice(b, batchSlot, 1);
}
};
// Prepare a slice of dJointInput and dJointOutput for gatherTree
DecodingInput dInput{dJointInput};
slice(dInput.endIds, dJointInput.endIds);
slice(dInput.lengths, dJointInput.lengths);
DecodingOutput dOutput{
ITensor::slice(dJointOutput.ids, batchSlot, 1), ITensor::slice(dJointOutput.gatheredIds, batchSlot, 1)};
dOutput.beamHypotheses = dJointOutput.beamHypotheses.slice(batchSlot, 1);
slice(dOutput.parentIds, dJointOutput.parentIds);
slice(dOutput.cumLogProbs, dJointOutput.cumLogProbs);
slice(dOutput.cacheIndirection, dJointOutput.cacheIndirection);
slice(dOutput.lengths, dJointOutput.lengths);
slice(dOutput.finishReasons, dJointOutput.finishReasons);
slice(dOutput.logProbs, dJointOutput.logProbs);
dOutput.newTokens = ITensor::view(dJointOutput.newTokens);
TLLM_CHECK(dOutput.newTokens->getShape().d[0] == 1);
dOutput.newTokens->squeeze(0);
dOutput.newTokens = ITensor::slice(dOutput.newTokens, batchSlot, 1);
dOutput.logProbsTiled = dJointOutput.logProbsTiled;
if (streaming)
{
// in case of streaming we shouldn't overwrite the data in beamHypotheses, since the beam search kernels expect
// ungathered data but the kernels in gatherTree write in-place.
// Thus, we need to make a copy of the beamHypotheses
auto const& beamSearchBuffers = decoderState.getBeamSearchBuffers();
tensorrt_llm::kernels::invokeCopyBeamHypotheses(dOutput.beamHypotheses, beamSearchBuffers.mOutputBeamHypotheses,
*dOutput.cumLogProbs, *beamSearchBuffers.mCumLogProbsTmp, stream, beamSearchBuffers.mNumSMs);
dOutput.beamHypotheses = beamSearchBuffers.mOutputBeamHypotheses;
dOutput.cumLogProbs = beamSearchBuffers.mCumLogProbsTmp;
}
return {(std::move(dInput)), (std::move(dOutput))};
}
} // namespace
// TODO call this at the end of forward if mFinished[i] changes from false to true?
CudaEvent GptDecoderBatched::finalize(decoder::DecoderState const& decoderState, SizeType32 batchSlot,
SamplingConfig const& samplingConfig, bool streaming) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto [dInput, dOutput] = prepareGatherTree(decoderState, batchSlot, streaming, *mRuntimeStream);
kernels::gatherTree(dOutput, dInput, samplingConfig, *mRuntimeStream);
CudaEvent event{};
mRuntimeStream->record(event);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return event;
}