TensorRT-LLMs/cpp/tests/resources/scripts/build_gptj_engines.py
Kaiyu Xie 75b6210ff4
Kaiyu/update main (#5)
* Update

* Update
2023-10-18 22:38:53 +08:00

143 lines
5.1 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
import os as _os
import pathlib as _pl
import platform as _pf
import sys as _sys
import typing as _tp
from build_engines_utils import run_command, wincopy
def build_engine(weight_dir: _pl.Path, engine_dir: _pl.Path, *args):
build_args = [_sys.executable, "examples/gptj/build.py"] + (
['--model_dir', str(weight_dir)] if weight_dir else []) + [
'--output_dir',
str(engine_dir),
'--dtype=float16',
'--logits_dtype=float16',
'--use_gemm_plugin=float16',
'--use_layernorm_plugin=float16',
'--max_batch_size=32',
'--max_input_len=40',
'--max_output_len=20',
'--max_beam_width=2',
'--log_level=error',
] + list(args)
run_command(build_args)
def build_engines(model_cache: _tp.Optional[str] = None, only_fp8=False):
resources_dir = _pl.Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
model_name = 'gpt-j-6b'
# Clone or update the model directory without lfs
hf_dir = models_dir / model_name
if hf_dir.exists():
assert hf_dir.is_dir()
run_command(["git", "pull"], cwd=hf_dir)
else:
if _pf.system() == "Windows":
url_prefix = ""
else:
url_prefix = "file://"
model_url = url_prefix + str(
_pl.Path(model_cache) / model_name
) if model_cache else "https://huggingface.co/EleutherAI/gpt-j-6b"
run_command([
"git", "clone", model_url, "--single-branch", "--no-local",
model_name
],
cwd=hf_dir.parent,
env={
**_os.environ, "GIT_LFS_SKIP_SMUDGE": "1"
})
assert (hf_dir.is_dir())
# Download the model file
model_file_name = "pytorch_model.bin"
if model_cache:
if _pf.system() == "Windows":
wincopy(source=str(
_pl.Path(model_cache) / model_name / model_file_name),
dest=model_file_name,
isdir=False,
cwd=hf_dir)
else:
run_command([
"rsync", "-av",
str(_pl.Path(model_cache) / model_name / model_file_name), "."
],
cwd=hf_dir)
else:
run_command(["git", "lfs", "pull", "--include", model_file_name],
cwd=hf_dir)
assert ((hf_dir / model_file_name).is_file())
engine_dir = models_dir / 'rt_engine' / model_name
# TODO add Tensor and Pipeline parallelism to GPT-J
tp_size = 1
pp_size = 1
tp_pp_dir = f"tp{tp_size}-pp{pp_size}-gpu"
if only_fp8:
# with ifb, new plugin
print(
"\nBuilding fp8-plugin engine using gpt_attention_plugin with inflight-batching, packed"
)
# TODO: use dummy scales atm; to re-enable when data is uploaded to the model cache
# quantized_fp8_model_arg = '--quantized_fp8_model_path=' + \
# str(_pl.Path(model_cache) / 'fp8-quantized-ammo' / 'gptj_tp1_rank0.npz')
build_engine(hf_dir, engine_dir / 'fp8-plugin' / tp_pp_dir,
'--use_gpt_attention_plugin=float16', '--enable_fp8',
'--fp8_kv_cache', '--use_inflight_batching',
'--paged_kv_cache', '--remove_input_padding')
else:
print("\nBuilding fp16-plugin engine")
build_engine(hf_dir, engine_dir / 'fp16-plugin' / tp_pp_dir,
'--use_gpt_attention_plugin=float16')
print("\nBuilding fp16-plugin-packed engine")
build_engine(hf_dir, engine_dir / 'fp16-plugin-packed' / tp_pp_dir,
'--use_gpt_attention_plugin=float16',
'--remove_input_padding')
print("\nBuilding fp16-plugin-packed-paged engine")
build_engine(hf_dir,
engine_dir / 'fp16-plugin-packed-paged' / tp_pp_dir,
'--use_gpt_attention_plugin=float16',
'--use_inflight_batching')
print("Done.")
if __name__ == "__main__":
parser = _arg.ArgumentParser()
parser.add_argument("--model_cache",
type=str,
help="Directory where models are stored")
parser.add_argument(
"--only_fp8",
action="store_true",
help="Build engines for only FP8 tests. Implemented for H100 runners.")
build_engines(**vars(parser.parse_args()))