mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
287 lines
11 KiB
Plaintext
287 lines
11 KiB
Plaintext
/*
|
|
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/cudaTypeUtils.cuh"
|
|
#include "tensorrt_llm/common/quantTypeUtils.cuh"
|
|
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
|
|
#include "tensorrt_llm/kernels/rmsnormKernels.h"
|
|
|
|
using namespace tensorrt_llm::common;
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
template <typename Tf, typename T>
|
|
__inline__ __device__ Tf compute_rmsnorm(Tf val, float s_variance, T const* gamma, T const* beta, int i)
|
|
{
|
|
Tf ret = val * s_variance * cuda_cast<Tf>(gamma[i]);
|
|
if (beta != nullptr)
|
|
{
|
|
ret = ret + cuda_cast<Tf>(beta[i]);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Computes the rmsnorm https://pytorch.org/docs/stable/generated/torch.nn.rmsnorm.html
|
|
* normed_output <- ( input / Sqrt(E[input²] + eps) ) * gamma + beta
|
|
* input is [tokens, hidden_dim]. Mean and Variance are per-row (i.e. per-token)
|
|
*
|
|
* One CTA handles one row.
|
|
*
|
|
*
|
|
* USE_SHMEM controls if we cache input values into shared memory
|
|
*
|
|
* Optional: with dynamic scaling, the last pass doesn't write immediately but finds the
|
|
* amax per row. A final pass scales to int8 accordingly, and writes output to
|
|
* normed_output_quant.
|
|
*/
|
|
template <typename T, typename QuantT, bool USE_SHMEM>
|
|
__global__ void generalRmsNorm(T const* input, T const* gamma, T const* beta, T* normed_output, float const eps,
|
|
int tokens, int hidden_dim, float const* clampPtr, float const* scale_orig_quant_per_tensor,
|
|
float* scale_orig_quant_per_token, float* sum_per_token, QuantT* normed_output_quant, bool hasFp8MinScaling)
|
|
{
|
|
constexpr auto num_elems_T = num_elems<T>::value;
|
|
// using int8_packed_t = typename packed_as<int8_t, num_elems_T>::type;
|
|
// using fp8_packed_t = typename packed_as<__nv_fp8_e4m3, num_elems_T>::type;
|
|
using QuantT_packed_t = typename packed_as<QuantT, num_elems_T>::type;
|
|
using float_packed_t = typename packed_as<float, num_elems_T>::type;
|
|
using T_scalar = typename packed_as<T, 1>::type;
|
|
|
|
// The clamping minimum / maximum values.
|
|
T const clampMin = cuda_cast<T>(clampPtr ? clampPtr[0] : -FLT_MAX);
|
|
T const clampMax = cuda_cast<T>(clampPtr ? clampPtr[1] : FLT_MAX);
|
|
|
|
// The quantized data type's maximum value (upper-bound).
|
|
static constexpr float MAX_QUANT_VAL = QuantTypeStaticVals<QuantT>::MAX_VAL;
|
|
// The minimum scaling factor (lower-bound).
|
|
static constexpr float MIN_SCALING_FACTOR = QuantTypeStaticVals<QuantT>::MIN_SCALING_FACTOR;
|
|
static constexpr float MIN_SCALING_FACTOR_RCP = QuantTypeStaticVals<QuantT>::MIN_SCALING_FACTOR_RCP;
|
|
|
|
extern __shared__ __align__(sizeof(float)) char _shmem[];
|
|
T* shmem = reinterpret_cast<T*>(_shmem);
|
|
|
|
__shared__ float s_variance;
|
|
|
|
int const tidx = threadIdx.x;
|
|
int const bidx = blockIdx.x;
|
|
|
|
float variance = 0.0f;
|
|
float local_var_sum = 0.0f;
|
|
|
|
int const n_elems = hidden_dim / num_elems_T;
|
|
for (int i = tidx; i < n_elems; i += blockDim.x)
|
|
{
|
|
T const val = input[bidx * n_elems + i];
|
|
if (USE_SHMEM)
|
|
{
|
|
shmem[i] = val;
|
|
}
|
|
|
|
float_packed_t const val_f = cuda_cast<float_packed_t>(val);
|
|
|
|
local_var_sum += cuda_sum<float>(val_f * val_f);
|
|
}
|
|
|
|
float packed[1] = {local_var_sum};
|
|
blockReduceSumV2<float, 1>(packed);
|
|
variance = packed[0];
|
|
|
|
if (threadIdx.x == 0)
|
|
{
|
|
variance = (variance / hidden_dim); // Var[x] = E[x²]
|
|
s_variance = rsqrtf(variance + eps);
|
|
}
|
|
__syncthreads();
|
|
|
|
bool const with_per_token_scaling = scale_orig_quant_per_token != nullptr;
|
|
bool const with_per_tensor_scaling = scale_orig_quant_per_tensor != nullptr;
|
|
bool const with_per_token_sum = sum_per_token != nullptr;
|
|
|
|
float_packed_t const scale_orig_quant
|
|
= cuda_cast<float_packed_t>(with_per_tensor_scaling ? *scale_orig_quant_per_tensor : 0.0f);
|
|
T_scalar amax = 1e-6f;
|
|
float local_sum = 0.f;
|
|
|
|
for (int i = tidx; i < n_elems; i += blockDim.x)
|
|
{
|
|
int const index = bidx * n_elems + i;
|
|
float_packed_t const val_f = cuda_cast<float_packed_t>(USE_SHMEM ? shmem[i] : input[index]);
|
|
T val = cuda_cast<T>(compute_rmsnorm(val_f, s_variance, gamma, beta, i));
|
|
|
|
if (with_per_token_scaling)
|
|
{
|
|
val = cuda_clamp(val, clampMin, clampMax);
|
|
amax = cuda_max(cuda_max<T_scalar, T>(cuda_abs(val)), amax);
|
|
if (USE_SHMEM)
|
|
{
|
|
shmem[i] = val;
|
|
}
|
|
}
|
|
else if (with_per_tensor_scaling)
|
|
{
|
|
val = cuda_clamp(val, clampMin, clampMax);
|
|
reinterpret_cast<QuantT_packed_t*>(normed_output_quant)[index]
|
|
= cuda_cast<QuantT_packed_t>(cuda_cast<float_packed_t>(val) * scale_orig_quant);
|
|
}
|
|
else
|
|
{
|
|
normed_output[index] = val;
|
|
}
|
|
|
|
if (with_per_token_sum)
|
|
{
|
|
local_sum += cuda_sum<float>(cuda_cast<float_packed_t>(val));
|
|
}
|
|
}
|
|
|
|
if (with_per_token_scaling)
|
|
{
|
|
float abs_max_f = blockAllReduceMax(cuda_cast<float>(amax));
|
|
float const dynamic_per_token_scale
|
|
= hasFp8MinScaling ? fminf(MAX_QUANT_VAL / abs_max_f, MIN_SCALING_FACTOR_RCP) : (MAX_QUANT_VAL / abs_max_f);
|
|
for (int i = tidx; i < n_elems; i += blockDim.x)
|
|
{
|
|
int const index = bidx * n_elems + i;
|
|
float_packed_t val_f = cuda_cast<float_packed_t>(USE_SHMEM ? shmem[i] : input[index]);
|
|
if (!USE_SHMEM)
|
|
{
|
|
val_f = compute_rmsnorm(val_f, s_variance, gamma, beta, i);
|
|
}
|
|
|
|
reinterpret_cast<QuantT_packed_t*>(normed_output_quant)[index]
|
|
= cuda_cast<QuantT_packed_t>(val_f * cuda_cast<float_packed_t>(dynamic_per_token_scale));
|
|
}
|
|
if (tidx == 0)
|
|
{
|
|
scale_orig_quant_per_token[bidx] = hasFp8MinScaling
|
|
? cuda_max(abs_max_f / MAX_QUANT_VAL, MIN_SCALING_FACTOR)
|
|
: abs_max_f / MAX_QUANT_VAL;
|
|
}
|
|
}
|
|
|
|
if (with_per_token_sum)
|
|
{
|
|
float packed_sum[1] = {local_sum};
|
|
blockReduceSumV2<float, 1>(packed_sum);
|
|
if (tidx == 0)
|
|
{
|
|
sum_per_token[bidx] = packed_sum[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, typename QuantT>
|
|
void dispatch_rmsnorm_type_square_method(T const* input, T const* gamma, T const* beta, T* normed_output,
|
|
float const eps, int tokens, int hidden_dim, float const* clampPtr, float const* scale_orig_quant_per_tensor,
|
|
float* scale_orig_quant_per_token, float* sum_per_token, QuantT* normed_output_quant, bool const hasFp8MinScaling,
|
|
dim3 const grid, dim3 const block, size_t const shmem_size, cudaStream_t stream)
|
|
{
|
|
// Do we use shared memory to cache intermediate results.
|
|
bool use_shmem = true;
|
|
if (shmem_size >= (48 << 10))
|
|
{
|
|
cudaError_t ret = cudaFuncSetAttribute(
|
|
generalRmsNorm<T, QuantT, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem_size);
|
|
// Use shared memory when the capactity is enough.
|
|
use_shmem = (ret == cudaSuccess);
|
|
}
|
|
|
|
if (use_shmem)
|
|
{
|
|
generalRmsNorm<T, QuantT, true><<<grid, block, shmem_size, stream>>>(input, gamma, beta, normed_output, eps,
|
|
tokens, hidden_dim, clampPtr, scale_orig_quant_per_tensor, scale_orig_quant_per_token, sum_per_token,
|
|
normed_output_quant, hasFp8MinScaling);
|
|
}
|
|
else
|
|
{
|
|
generalRmsNorm<T, QuantT, false><<<grid, block, shmem_size, stream>>>(input, gamma, beta, normed_output, eps,
|
|
tokens, hidden_dim, clampPtr, scale_orig_quant_per_tensor, scale_orig_quant_per_token, sum_per_token,
|
|
normed_output_quant, hasFp8MinScaling);
|
|
}
|
|
}
|
|
|
|
template <typename T, typename QuantT>
|
|
void dispatch_rmsnorm_type(T const* input, T const* gamma, T const* beta, T* normed_output, float const eps, int tokens,
|
|
int hidden_dim, float const* clampPtr, float const* scale_orig_quant_per_tensor, float* scale_orig_quant_per_token,
|
|
float* sum_per_token, QuantT* normed_output_quant, bool const hasFp8MinScaling, dim3 const grid, dim3 const block,
|
|
size_t const shmem_size, cudaStream_t stream)
|
|
{
|
|
dispatch_rmsnorm_type_square_method(input, gamma, beta, normed_output, eps, tokens, hidden_dim, clampPtr,
|
|
scale_orig_quant_per_tensor, scale_orig_quant_per_token, sum_per_token, normed_output_quant, hasFp8MinScaling,
|
|
grid, block, shmem_size, stream);
|
|
}
|
|
|
|
template <typename T, typename QuantT>
|
|
void invokeGeneralRmsNorm(T* out, T const* input, T const* gamma, T const* beta, float const eps, int const tokens,
|
|
int const hidden_dim, QuantMode quantMode, cudaStream_t stream, float const* clampPtr, float const* scale,
|
|
float* dynamic_scale, float* sum_per_token, QuantT* normed_output_quant)
|
|
{
|
|
dim3 grid(tokens);
|
|
dim3 block(min(hidden_dim, 1024));
|
|
// Make sure block.x is multiple of 32 for warp shuffle to work
|
|
block.x = 32 * ((block.x + 31) / 32);
|
|
|
|
constexpr size_t vec_size = 2;
|
|
size_t const shmem_size = hidden_dim * sizeof(T);
|
|
bool const use_vec_type = (hidden_dim % vec_size == 0)
|
|
&& (std::is_same<T, half>::value
|
|
#ifdef ENABLE_BF16
|
|
|| std::is_same<T, __nv_bfloat16>::value
|
|
#endif
|
|
);
|
|
|
|
// Enable min_scaling_factor if it is fp8 rowwise per-token quantization.
|
|
bool hasFp8MinScaling = quantMode.hasFp8RowWise();
|
|
|
|
if (use_vec_type)
|
|
{
|
|
using Tp = typename packed_as<T, vec_size>::type;
|
|
dispatch_rmsnorm_type(reinterpret_cast<Tp const*>(input), reinterpret_cast<Tp const*>(gamma),
|
|
reinterpret_cast<Tp const*>(beta), reinterpret_cast<Tp*>(out), eps, tokens, hidden_dim, clampPtr, scale,
|
|
dynamic_scale, sum_per_token, normed_output_quant, hasFp8MinScaling, grid, block, shmem_size, stream);
|
|
}
|
|
else
|
|
{
|
|
dispatch_rmsnorm_type(input, gamma, beta, out, eps, tokens, hidden_dim, clampPtr, scale, dynamic_scale,
|
|
sum_per_token, normed_output_quant, hasFp8MinScaling, grid, block, shmem_size, stream);
|
|
}
|
|
}
|
|
|
|
#define INSTANTIATE_GENERAL_RMSNORM(T, QuantT) \
|
|
template void invokeGeneralRmsNorm(T* out, const T* input, const T* gamma, const T* beta, const float eps, \
|
|
const int tokens, const int hidden_dim, QuantMode quantMode, cudaStream_t stream, float const* clampPtr, \
|
|
const float* scale, float* dynamic_scale, float* sum_per_token, QuantT* normed_output_quant);
|
|
|
|
INSTANTIATE_GENERAL_RMSNORM(float, int8_t);
|
|
INSTANTIATE_GENERAL_RMSNORM(half, int8_t);
|
|
|
|
#ifdef ENABLE_BF16
|
|
INSTANTIATE_GENERAL_RMSNORM(__nv_bfloat16, int8_t);
|
|
#endif
|
|
|
|
#ifdef ENABLE_FP8
|
|
INSTANTIATE_GENERAL_RMSNORM(float, __nv_fp8_e4m3);
|
|
INSTANTIATE_GENERAL_RMSNORM(half, __nv_fp8_e4m3);
|
|
#ifdef ENABLE_BF16
|
|
INSTANTIATE_GENERAL_RMSNORM(__nv_bfloat16, __nv_fp8_e4m3);
|
|
#endif
|
|
#endif
|
|
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|