TensorRT-LLMs/llm-api-examples/customization.html
2024-11-01 20:31:15 +08:00

361 lines
34 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="../">
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Common Customizations &mdash; tensorrt_llm documentation</title>
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=80d5e7a1" />
<link rel="stylesheet" type="text/css" href="../_static/css/theme.css?v=19f00094" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<!--[if lt IE 9]>
<script src="../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script src="../_static/jquery.js?v=5d32c60e"></script>
<script src="../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../_static/doctools.js?v=888ff710"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=f281be69"></script>
<script src="../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Examples" href="llm_api_examples.html" />
<link rel="prev" title="LLM Examples Introduction" href="index.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../index.html" class="icon icon-home">
tensorrt_llm
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<p class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../key-features.html">Key Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../release-notes.html">Release Notes</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Installation</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../installation/linux.html">Installing on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="../installation/windows.html">Installing on Windows</a></li>
<li class="toctree-l1"><a class="reference internal" href="../installation/build-from-source-windows.html">Building from Source Code on Windows</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">LLM API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../llm-api/index.html">API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../llm-api/reference.html">API Reference</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">LLM API Examples</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="index.html">LLM Examples Introduction</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Common Customizations</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#quantization">Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="#sampling">Sampling</a></li>
<li class="toctree-l2"><a class="reference internal" href="#build-configuration">Build Configuration</a></li>
<li class="toctree-l2"><a class="reference internal" href="#runtime-customization">Runtime Customization</a></li>
<li class="toctree-l2"><a class="reference internal" href="#tokenizer-customization">Tokenizer Customization</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#disable-tokenizer">Disable Tokenizer</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#generation">Generation</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#asyncio-based-generation">Asyncio-Based Generation</a></li>
<li class="toctree-l3"><a class="reference internal" href="#future-style-generation">Future-Style Generation</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="llm_api_examples.html">Examples</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.layers.html">Layers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.functional.html">Functionals</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.models.html">Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">C++ API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../_cpp_gen/executor.html">Executor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../_cpp_gen/runtime.html">Runtime</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-build.html">trtllm-build</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Architecture</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../architecture/overview.html">TensorRT-LLM Architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html">Model Definition</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#compilation">Compilation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#runtime">Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#multi-gpu-and-multi-node-support">Multi-GPU and Multi-Node Support</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/add-model.html">Adding a Model</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Advanced</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/executor.html">Executor API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/batch-manager.html">The Batch Manager in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/inference-request.html">Inference Request</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/inference-request.html#responses">Responses</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/lora.html">Run gpt-2b + LoRA using GptManager / cpp runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/speculative-decoding.html">Speculative Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/speculative-decoding.html#lookahead-decoding">Lookahead decoding</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Performance</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-benchmarking.html">Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-best-practices.html">Best Practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-analysis.html">Performance Analysis</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../reference/troubleshooting.html">Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="../reference/support-matrix.html">Support Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../reference/precision.html">Numerical Precision</a></li>
<li class="toctree-l1"><a class="reference internal" href="../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../index.html">tensorrt_llm</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="../index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">Common Customizations</li>
<li class="wy-breadcrumbs-aside">
<a href="../_sources/llm-api-examples/customization.md.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="common-customizations">
<h1>Common Customizations<a class="headerlink" href="#common-customizations" title="Link to this heading"></a></h1>
<section id="quantization">
<h2>Quantization<a class="headerlink" href="#quantization" title="Link to this heading"></a></h2>
<p>TensorRT-LLM can quantize the Hugging Face model automatically. By setting the appropriate flags in the <code class="docutils literal notranslate"><span class="pre">LLM</span></code> instance. For example, to perform an Int4 AWQ quantization, the following code triggers the model quantization. Please refer to complete list of <a class="reference external" href="https://nvidia.github.io/TensorRT-LLM/_modules/tensorrt_llm/quantization/mode.html#QuantAlgo">supported flags</a> and acceptable values.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">tensorrt_llm.hlapi</span> <span class="kn">import</span> <span class="n">QuantConfig</span><span class="p">,</span> <span class="n">QuantAlgo</span>
<span class="n">quant_config</span> <span class="o">=</span> <span class="n">QuantConfig</span><span class="p">(</span><span class="n">quant_algo</span><span class="o">=</span><span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A16_AWQ</span><span class="p">)</span>
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">model</span><span class="o">-</span><span class="nb">dir</span><span class="o">&gt;</span><span class="p">,</span> <span class="n">quant_config</span><span class="o">=</span><span class="n">quant_config</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="sampling">
<h2>Sampling<a class="headerlink" href="#sampling" title="Link to this heading"></a></h2>
<p>SamplingParams can customize the sampling strategy to control LLM generated responses, such as beam search, temperature, and <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/blob/main/tensorrt_llm/hlapi/utils.py#L55-L76">others</a>.</p>
<p>As an example, to enable beam search with a beam size of 4, set the <code class="docutils literal notranslate"><span class="pre">sampling_params</span></code> as follows:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">tensorrt_llm.hlapi</span> <span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span><span class="p">,</span> <span class="n">BuildConfig</span>
<span class="n">build_config</span> <span class="o">=</span> <span class="n">BuildConfig</span><span class="p">()</span>
<span class="n">build_config</span><span class="o">.</span><span class="n">max_beam_width</span> <span class="o">=</span> <span class="mi">4</span>
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">,</span> <span class="n">build_config</span><span class="o">=</span><span class="n">build_config</span><span class="p">)</span>
<span class="c1"># Let the LLM object generate text with the default sampling strategy, or</span>
<span class="c1"># you can create a SamplingParams object as well with several fields set manually</span>
<span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">beam_width</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span> <span class="c1"># current limitation: beam_width should be equal to max_beam_width</span>
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="o">&lt;</span><span class="n">prompt</span><span class="o">&gt;</span><span class="p">,</span> <span class="n">sampling_params</span><span class="o">=</span><span class="n">sampling_params</span><span class="p">):</span>
<span class="nb">print</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
</pre></div>
</div>
<p><code class="docutils literal notranslate"><span class="pre">SamplingParams</span></code> manages and dispatches fields to C++ classes including:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://nvidia.github.io/TensorRT-LLM/_cpp_gen/runtime.html#_CPPv4N12tensorrt_llm7runtime14SamplingConfigE">SamplingConfig</a></p></li>
<li><p><a class="reference external" href="https://nvidia.github.io/TensorRT-LLM/_cpp_gen/executor.html#_CPPv4N12tensorrt_llm8executor12OutputConfigE">OutputConfig</a></p></li>
</ul>
<p>Refer to the <a class="reference external" href="https://nvidia.github.io/TensorRT-LLM/llm-api/index.html#tensorrt_llm.hlapi.SamplingParams">class documentation</a> for more details.</p>
</section>
<section id="build-configuration">
<h2>Build Configuration<a class="headerlink" href="#build-configuration" title="Link to this heading"></a></h2>
<p>Apart from the arguments mentioned above, you can also customize the build configuration with the <code class="docutils literal notranslate"><span class="pre">build_config</span></code> class and other arguments borrowed from the trtllm-build CLI. These build configuration options provide flexibility in building engines for the target hardware and use cases. Refer to the following example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">model</span><span class="o">-</span><span class="n">path</span><span class="o">&gt;</span><span class="p">,</span>
<span class="n">build_config</span><span class="o">=</span><span class="n">BuildConfig</span><span class="p">(</span>
<span class="n">max_num_tokens</span><span class="o">=</span><span class="mi">4096</span><span class="p">,</span>
<span class="n">max_batch_size</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
<span class="n">max_beam_width</span><span class="o">=</span><span class="mi">4</span><span class="p">))</span>
</pre></div>
</div>
<p>Refer to the <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/blob/main/tensorrt_llm/builder.py#L470-L501">buildconfig documentation</a> for more details.</p>
</section>
<section id="runtime-customization">
<h2>Runtime Customization<a class="headerlink" href="#runtime-customization" title="Link to this heading"></a></h2>
<p>Similar to <code class="docutils literal notranslate"><span class="pre">build_config</span></code>, you can also customize the runtime configuration with the <code class="docutils literal notranslate"><span class="pre">runtime_config</span></code>, <code class="docutils literal notranslate"><span class="pre">peft_cache_config</span></code> or other <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/blob/main/tensorrt_llm/hlapi/llm_utils.py#L186-L223">arguments</a> borrowed from the lower-level APIs. These runtime configuration options provide additional flexibility with respect to KV cache management, GPU memory allocation and so on. Refer to the following example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">tensorrt_llm.hlapi</span> <span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">KvCacheConfig</span>
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">,</span>
<span class="n">kv_cache_config</span><span class="o">=</span><span class="n">KvCacheConfig</span><span class="p">(</span>
<span class="n">free_gpu_memory_fraction</span><span class="o">=</span><span class="mf">0.8</span><span class="p">))</span>
</pre></div>
</div>
</section>
<section id="tokenizer-customization">
<h2>Tokenizer Customization<a class="headerlink" href="#tokenizer-customization" title="Link to this heading"></a></h2>
<p>By default, the high-level API uses transformers <code class="docutils literal notranslate"><span class="pre">AutoTokenizer</span></code>. You can override it with your own tokenizer by passing it when creating the LLM object. Refer to the following example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">,</span> <span class="n">tokenizer</span><span class="o">=&lt;</span><span class="n">my_faster_one</span><span class="o">&gt;</span><span class="p">)</span>
</pre></div>
</div>
<p>The LLM() workflow should use your tokenizer instead.</p>
<p>It is also possible to input token IDs directly without <code class="docutils literal notranslate"><span class="pre">Tokenizers</span></code> with the following code. The code produces token IDs without text because the tokenizer is not used.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">([</span><span class="mi">32</span><span class="p">,</span> <span class="mi">12</span><span class="p">]):</span>
<span class="o">...</span>
</pre></div>
</div>
<section id="disable-tokenizer">
<h3>Disable Tokenizer<a class="headerlink" href="#disable-tokenizer" title="Link to this heading"></a></h3>
<p>For performance considerations, you can disable the tokenizer by passing <code class="docutils literal notranslate"><span class="pre">skip_tokenizer_init=True</span></code> when creating <code class="docutils literal notranslate"><span class="pre">LLM</span></code>. In this case, <code class="docutils literal notranslate"><span class="pre">LLM.generate</span></code> and <code class="docutils literal notranslate"><span class="pre">LLM.generate_async</span></code> will expect prompt token ids as input. Refer to the following example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">([[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">12</span><span class="p">]],</span> <span class="n">skip_tokenizer_init</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="nb">print</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
</pre></div>
</div>
<p>You will get something like:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">RequestOutput</span><span class="p">(</span><span class="n">request_id</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">prompt</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">prompt_token_ids</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">15043</span><span class="p">,</span> <span class="mi">29892</span><span class="p">,</span> <span class="mi">590</span><span class="p">,</span> <span class="mi">1024</span><span class="p">,</span> <span class="mi">338</span><span class="p">],</span> <span class="n">outputs</span><span class="o">=</span><span class="p">[</span><span class="n">CompletionOutput</span><span class="p">(</span><span class="n">index</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">text</span><span class="o">=</span><span class="s1">&#39;&#39;</span><span class="p">,</span> <span class="n">token_ids</span><span class="o">=</span><span class="p">[</span><span class="mi">518</span><span class="p">,</span> <span class="mi">10858</span><span class="p">,</span> <span class="mi">4408</span><span class="p">,</span> <span class="mi">29962</span><span class="p">,</span> <span class="mi">322</span><span class="p">,</span> <span class="mi">306</span><span class="p">,</span> <span class="mi">626</span><span class="p">,</span> <span class="mi">263</span><span class="p">,</span> <span class="mi">518</span><span class="p">,</span> <span class="mi">10858</span><span class="p">,</span> <span class="mi">20627</span><span class="p">,</span> <span class="mi">29962</span><span class="p">,</span> <span class="mi">472</span><span class="p">,</span> <span class="mi">518</span><span class="p">,</span> <span class="mi">10858</span><span class="p">,</span> <span class="mi">6938</span><span class="p">,</span> <span class="mi">1822</span><span class="p">,</span> <span class="mi">306</span><span class="p">,</span> <span class="mi">626</span><span class="p">,</span> <span class="mi">5007</span><span class="p">,</span> <span class="mi">304</span><span class="p">,</span> <span class="mi">4653</span><span class="p">,</span> <span class="mi">590</span><span class="p">,</span> <span class="mi">4066</span><span class="p">,</span> <span class="mi">297</span><span class="p">,</span> <span class="mi">278</span><span class="p">,</span> <span class="mi">518</span><span class="p">,</span> <span class="mi">11947</span><span class="p">,</span> <span class="mi">18527</span><span class="p">,</span> <span class="mi">29962</span><span class="p">,</span> <span class="mi">2602</span><span class="p">,</span> <span class="mi">472</span><span class="p">],</span> <span class="n">cumulative_logprob</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">logprobs</span><span class="o">=</span><span class="p">[])],</span> <span class="n">finished</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p>Note that the <code class="docutils literal notranslate"><span class="pre">text</span></code> field in <code class="docutils literal notranslate"><span class="pre">CompletionOutput</span></code> is empty since the tokenizer is deactivated.</p>
</section>
</section>
<section id="generation">
<h2>Generation<a class="headerlink" href="#generation" title="Link to this heading"></a></h2>
<section id="asyncio-based-generation">
<h3>Asyncio-Based Generation<a class="headerlink" href="#asyncio-based-generation" title="Link to this heading"></a></h3>
<p>With the LLM API, you can also perform asynchronous generation with the <code class="docutils literal notranslate"><span class="pre">generate_async</span></code> method. Refer to the following example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="n">model</span><span class="o">=&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">)</span>
<span class="k">async</span> <span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate_async</span><span class="p">(</span><span class="o">&lt;</span><span class="n">prompt</span><span class="o">&gt;</span><span class="p">,</span> <span class="n">streaming</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="nb">print</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
</pre></div>
</div>
<p>When the <code class="docutils literal notranslate"><span class="pre">streaming</span></code> flag is set to <code class="docutils literal notranslate"><span class="pre">True</span></code>, the <code class="docutils literal notranslate"><span class="pre">generate_async</span></code> method will return a generator that yields each token as soon as it is available. Otherwise, it returns a generator that wait for and yields only the final results.</p>
</section>
<section id="future-style-generation">
<h3>Future-Style Generation<a class="headerlink" href="#future-style-generation" title="Link to this heading"></a></h3>
<p>The result of the <code class="docutils literal notranslate"><span class="pre">generate_async</span></code> method is a <a class="reference external" href="https://docs.python.org/3/library/asyncio-future.html#asyncio.Future">Future-like</a> object, it doesnt block the thread unless the <code class="docutils literal notranslate"><span class="pre">.result()</span></code> is called.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># This will not block the main thread</span>
<span class="n">generation</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate_async</span><span class="p">(</span><span class="o">&lt;</span><span class="n">prompt</span><span class="o">&gt;</span><span class="p">)</span>
<span class="c1"># Do something else here</span>
<span class="c1"># call .result() to explicitly block the main thread and wait for the result when needed</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">generation</span><span class="o">.</span><span class="n">result</span><span class="p">()</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre">.result()</span></code> method works like the <a class="reference external" href="https://docs.python.org/zh-cn/3/library/asyncio-future.html#asyncio.Future.result">result</a> method in the Python Future, you can specify a timeout to wait for the result.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">output</span> <span class="o">=</span> <span class="n">generation</span><span class="o">.</span><span class="n">result</span><span class="p">(</span><span class="n">timeout</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
<p>There is an async version, where the <code class="docutils literal notranslate"><span class="pre">.aresult()</span></code> is used.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">generation</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate_async</span><span class="p">(</span><span class="o">&lt;</span><span class="n">prompt</span><span class="o">&gt;</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="k">await</span> <span class="n">generation</span><span class="o">.</span><span class="n">aresult</span><span class="p">()</span>
</pre></div>
</div>
</section>
</section>
</section>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="index.html" class="btn btn-neutral float-left" title="LLM Examples Introduction" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="llm_api_examples.html" class="btn btn-neutral float-right" title="Examples" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
<div role="contentinfo">
<jinja2.runtime.BlockReference object at 0x7fc13eac1b40>
<div class="footer">
<p>
Copyright © 2024 NVIDIA Corporation
</p>
<p>
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/" target="_blank" rel="noopener"
data-cms-ai="0">Privacy Policy</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/" target="_blank" rel="noopener"
data-cms-ai="0">Manage My Privacy</a> |
<a class="Link" href="https://www.nvidia.com/en-us/preferences/start/" target="_blank" rel="noopener"
data-cms-ai="0">Do Not Sell or Share My Data</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/" target="_blank"
rel="noopener" data-cms-ai="0">Terms of Service</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/" target="_blank" rel="noopener"
data-cms-ai="0">Accessibility</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/" target="_blank"
rel="noopener" data-cms-ai="0">Corporate Policies</a> |
<a class="Link" href="https://www.nvidia.com/en-us/product-security/" target="_blank" rel="noopener"
data-cms-ai="0">Product Security</a> |
<a class="Link" href="https://www.nvidia.com/en-us/contact/" target="_blank" rel="noopener"
data-cms-ai="0">Contact</a>
</p>
</div>
</div>
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>