TensorRT-LLMs/examples/model_api/llama.py
2024-09-03 12:14:23 +02:00

70 lines
2.3 KiB
Python

import argparse
import os
from pathlib import Path
from transformers import AutoTokenizer
import tensorrt_llm
from tensorrt_llm import BuildConfig, build
from tensorrt_llm.executor import GenerationExecutor
from tensorrt_llm.hlapi import SamplingParams
from tensorrt_llm.models import LLaMAForCausalLM
def parse_args():
parser = argparse.ArgumentParser(description="Llama single model example")
parser.add_argument(
"--engine_dir",
type=Path,
required=True,
help=
"Directory to save and load the engine. When -c is specified, always rebuild and save to this dir. When -c is not specified, load engine when the engine_dir exists, rebuild otherwise"
)
parser.add_argument(
"--hf_model_dir",
type=str,
required=True,
help="Read the model data and tokenizer from this directory")
parser.add_argument(
"-c",
"--clean_build",
default=False,
action="store_true",
help=
"Clean build the engine even if the engine_dir exists, be careful, this overwrites the engine_dir!!"
)
return parser.parse_args()
def main():
tensorrt_llm.logger.set_level('verbose')
args = parse_args()
build_config = BuildConfig(max_input_len=256,
max_seq_len=276,
max_batch_size=1)
# just for fast build, not best for production
build_config.builder_opt = 0
build_config.plugin_config.gemm_plugin = 'auto'
if args.clean_build or not args.engine_dir.exists():
args.engine_dir.mkdir(exist_ok=True, parents=True)
os.makedirs(args.engine_dir, exist_ok=True)
llama = LLaMAForCausalLM.from_hugging_face(args.hf_model_dir)
engine = build(llama, build_config)
engine.save(args.engine_dir)
tokenizer = AutoTokenizer.from_pretrained(args.hf_model_dir)
executor = GenerationExecutor.create(args.engine_dir)
sampling_params = SamplingParams(max_tokens=5)
input_str = "What should you say when someone gives you a gift? You should say:"
output = executor.generate(tokenizer.encode(input_str),
sampling_params=sampling_params)
output_str = tokenizer.decode(output.outputs[0].token_ids)
print(f"{input_str} {output_str}")
if __name__ == "__main__":
main()