TensorRT-LLMs/tests/quantization/test_quant.py
Kaiyu Xie 5d8ca2faf7
Update TensorRT-LLM (#1639)
* Update TensorRT-LLM

---------

Co-authored-by: vonjackustc <fga@mail.ustc.edu.cn>
2024-05-21 17:51:02 +08:00

145 lines
5.6 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from tensorrt_llm.layers import ColumnLinear, RowLinear
from tensorrt_llm.models import GPTForCausalLM, PretrainedConfig
from tensorrt_llm.models.modeling_utils import QuantConfig
from tensorrt_llm.quantization import QuantAlgo
from tensorrt_llm.quantization.layers import (SmoothQuantAttention,
SmoothQuantLayerNorm,
SmoothQuantMLP,
WeightOnlyQuantColumnLinear,
WeightOnlyQuantRowLinear)
from tensorrt_llm.quantization.quantize import quantize
class TestQuant(unittest.TestCase):
def test_weight_only_quant(self):
quant_algo = QuantAlgo.W8A16
config = {
'architecture': 'GPTForCausalLM',
'dtype': 'float16',
'num_hidden_layers': 2,
'num_attention_heads': 12,
'hidden_size': 768,
'vocab_size': 51200,
'max_position_embeddings': 1024,
'hidden_act': 'relu',
}
config = PretrainedConfig.from_dict(config)
model = GPTForCausalLM(config)
quant_model = quantize(model, QuantConfig(quant_algo))
self.assertTrue(hasattr(quant_model, 'quant_mode'))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].attention.qkv,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].attention.dense,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].mlp.fc,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].mlp.proj,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[1].attention.qkv,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[1].attention.dense,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[1].mlp.fc,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[1].mlp.proj,
WeightOnlyQuantRowLinear))
self.assertTrue(isinstance(quant_model.lm_head, ColumnLinear))
def test_weight_only_quant_exclude_modules(self):
quant_algo = QuantAlgo.W8A16
config = {
'architecture': 'GPTForCausalLM',
'dtype': 'float16',
'num_hidden_layers': 1,
'num_attention_heads': 12,
'hidden_size': 768,
'vocab_size': 51200,
'max_position_embeddings': 1024,
'hidden_act': 'relu',
}
config = PretrainedConfig.from_dict(config)
model = GPTForCausalLM(config)
quant_model = quantize(
model,
QuantConfig(quant_algo,
exclude_modules=[
'fc', 'dense', 'vocab_embedding',
'position_embedding', 'block_embedding'
]))
self.assertTrue(hasattr(quant_model, 'quant_mode'))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].attention.qkv,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].attention.dense,
RowLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].mlp.fc, ColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].mlp.proj,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.lm_head, WeightOnlyQuantColumnLinear))
def test_convert_GPT_to_smooth_quant(self):
config = {
'architecture': 'GPTForCausalLM',
'dtype': 'float16',
'num_hidden_layers': 1,
'num_attention_heads': 1,
'hidden_size': 128,
'vocab_size': 1024,
'max_position_embeddings': 256,
'hidden_act': 'gelu',
}
config = PretrainedConfig.from_dict(config)
model = GPTForCausalLM(config)
quant_algo = QuantAlgo.W8A8_SQ_PER_TENSOR_PLUGIN
quant_config = QuantConfig(quant_algo)
quant_model = quantize(model, quant_config)
for layer in quant_model.transformer.layers:
assert isinstance(layer.input_layernorm, SmoothQuantLayerNorm)
assert isinstance(layer.post_layernorm, SmoothQuantLayerNorm)
assert isinstance(layer.mlp, SmoothQuantMLP)
assert isinstance(layer.attention, SmoothQuantAttention)
assert quant_model.quant_mode == quant_config.quant_mode
if __name__ == '__main__':
unittest.main()