mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
220 lines
8.0 KiB
Python
220 lines
8.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional, Union
|
|
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import Tensor
|
|
from ...layers import (MLP, Attention, AttentionMaskType, ColumnLinear,
|
|
Embedding, LayerNorm)
|
|
from ...lora_helper import LoraConfig, use_lora
|
|
from ...mapping import Mapping
|
|
from ...module import Module
|
|
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
|
|
PretrainedConfig, QuantConfig)
|
|
from .config import PhiConfig
|
|
from .convert import load_weights_from_hf_model
|
|
|
|
|
|
class PhiDecoderLayer(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
tp_group = config.mapping.tp_group
|
|
tp_size = config.mapping.tp_size
|
|
|
|
self.input_layernorm = LayerNorm(normalized_shape=config.hidden_size,
|
|
dtype=config.dtype)
|
|
|
|
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
|
|
local_layer_idx = layer_idx - layers_range[0]
|
|
self.attention = Attention(
|
|
local_layer_idx=local_layer_idx,
|
|
hidden_size=config.hidden_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
rotary_embedding_percentage=config.rotary_pct,
|
|
position_embedding_type=config.position_embedding_type,
|
|
rotary_embedding_base=config.rotary_base,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
dtype=config.dtype,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
bias=True,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=config.quant_mode)
|
|
|
|
self.mlp = MLP(hidden_size=config.hidden_size,
|
|
ffn_hidden_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
dtype=config.dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=config.quant_mode)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: Tensor,
|
|
attention_mask=None,
|
|
use_cache=False,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
lora_layer_params=None,
|
|
):
|
|
residual = hidden_states
|
|
|
|
input_layernorm_output = self.input_layernorm(hidden_states)
|
|
|
|
attention_output = self.attention(
|
|
input_layernorm_output,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
norm_before_bmm1=True,
|
|
lora_layer_params=lora_layer_params,
|
|
)
|
|
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
|
|
feed_forward_hidden_states = self.mlp(input_layernorm_output, )
|
|
hidden_states = attention_output + feed_forward_hidden_states + residual
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class PhiModel(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
super().__init__()
|
|
self.vocab_embedding = Embedding(num_embeddings=config.vocab_size,
|
|
embedding_dim=config.hidden_size,
|
|
dtype=config.dtype)
|
|
|
|
self.layers = DecoderLayerList(PhiDecoderLayer, config)
|
|
self.ln_f = LayerNorm(normalized_shape=config.hidden_size,
|
|
dtype=config.dtype)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Tensor,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
prompt_embedding_table=None,
|
|
prompt_tasks=None,
|
|
prompt_vocab_size=None,
|
|
lora_params=None,
|
|
):
|
|
args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size
|
|
] if prompt_embedding_table is not None else []
|
|
hidden_states = self.vocab_embedding(input_ids, *args)
|
|
|
|
hidden_states = self.layers(hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
lora_params=lora_params)
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
if use_cache:
|
|
return (hidden_states, tuple(presents))
|
|
return hidden_states
|
|
|
|
|
|
class PhiForCausalLM(DecoderModelForCausalLM):
|
|
config_class = PhiConfig
|
|
|
|
config_class = PhiConfig
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
self.check_config(config)
|
|
transformer = PhiModel(config)
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
config.mapping.tp_size)
|
|
|
|
lm_head = ColumnLinear(config.hidden_size,
|
|
vocab_size_padded,
|
|
bias=True,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
gather_output=True)
|
|
|
|
self.trtllm_modules_to_hf_modules = {
|
|
"attn_q": "q_proj",
|
|
"attn_k": "k_proj",
|
|
"attn_v": "v_proj"
|
|
}
|
|
|
|
super().__init__(config, transformer, lm_head)
|
|
|
|
def check_config(self, config):
|
|
config.set_if_not_exist('partial_rotary_factor', 0.4)
|
|
config.set_if_not_exist('rotary_base', 10000.0)
|
|
|
|
@classmethod
|
|
def from_hugging_face(
|
|
cls,
|
|
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
**kwargs):
|
|
import transformers
|
|
|
|
assert hf_model_or_dir is not None
|
|
use_preloading = isinstance(hf_model_or_dir,
|
|
transformers.PreTrainedModel)
|
|
if use_preloading:
|
|
hf_model = hf_model_or_dir
|
|
hf_config_or_dir = hf_model.config
|
|
else:
|
|
hf_model_dir = hf_model_or_dir
|
|
hf_config_or_dir = hf_model_or_dir
|
|
config = PhiConfig.from_hugging_face(hf_config_or_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
if not use_preloading:
|
|
trust_remote_code = kwargs.pop('trust_remote_code', True)
|
|
|
|
hf_model = AutoModelForCausalLM.from_pretrained(
|
|
hf_model_dir,
|
|
torch_dtype="auto",
|
|
trust_remote_code=trust_remote_code)
|
|
|
|
assert isinstance(hf_model, transformers.PreTrainedModel)
|
|
|
|
weights = load_weights_from_hf_model(hf_model, config)
|
|
|
|
model = cls(config)
|
|
model.load(weights)
|
|
return model
|
|
|
|
def use_lora(self, lora_config: LoraConfig):
|
|
use_lora(self, lora_config, self.trtllm_modules_to_hf_modules)
|