TensorRT-LLMs/cpp/tensorrt_llm/kernels/trtllmGenKernels/gemmGatedAct/KernelRunner.cpp
chenfeiz0326 7f5716ef83
Cherry-pick trtllm-gen from feat/llama4 to main (#4086)
* feat: TRT-LLM Gen FP8 MoE Llama4

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>

* feat: TRT-LLM Gen llama4 MoE Top1 routing

Signed-off-by: Jiqun Tu <jtu@nvidia.com>

* feat: add per tensor FP8 TRT-LLM Gen GEMMs

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>

* Update

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Update

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Add license for cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/gemmCubins

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Add guard for routingIndicesClusterKernel

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Guard sm90+ for routingkernels

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Guard sm90+ for routingkernels

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

---------

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>
Signed-off-by: Jiqun Tu <jtu@nvidia.com>
Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>
Co-authored-by: Nikita Korobov <nkorobov@nvidia.com>
Co-authored-by: Jiqun Tu <jtu@nvidia.com>
2025-05-08 14:13:01 -07:00

164 lines
6.0 KiB
C++

/*
* Copyright (c) 2020-2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "KernelRunner.h"
#include "tensorrt_llm/common/assert.h"
#include "trtllmGen_gatedAct_export/GemmGatedActInterface.h"
#include "trtllmGen_gatedAct_export/GemmOptions.h"
#include "trtllmGen_gatedAct_export/trtllm/gen/DtypeDecl.h"
namespace tensorrt_llm
{
namespace kernels
{
namespace
{
namespace tg = trtllm::gen;
tg::Dtype dtypeToTrtllmDtype(Dtype dtype)
{
switch (dtype)
{
case Dtype::Bfloat16: return tg::Dtype::Bfloat16;
case Dtype::Fp16: return tg::Dtype::Fp16;
case Dtype::Fp32: return tg::Dtype::Fp32;
case Dtype::E2m1: return tg::Dtype::E2m1;
case Dtype::E4m3: return tg::Dtype::E4m3;
default: TLLM_CHECK_WITH_INFO(false, "Invalid dtype");
}
}
} // namespace
TrtllmGenGemmGatedActRunner::TrtllmGenGemmGatedActRunner(TrtllmGenGemmGatedActRunnerOptions const& options_)
: mOptions(options_)
{
// Select a GEMM kernel config to use
auto const gemm = gemmGatedAct::GemmGatedActInterface();
auto const configs = gemm.getGemmConfigs();
mPassingConfigIndices.clear();
for (size_t i = 0; i < gemm.getNumGemmConfigs(); ++i)
{
auto const options = configs[i].mOptions;
// When we include low-latency kernels we can set transposeMmaOutput via constructor
if (options.mDtypeElt == dtypeToTrtllmDtype(mOptions.eltType)
&& options.mDtypeC == dtypeToTrtllmDtype(mOptions.outputType)
&& options.mUseDeepSeekFp8 == mOptions.deepSeekFp8
&& options.mTransposeMmaOutput == mOptions.transposeMmaOutput)
{
mPassingConfigIndices.push_back(i);
}
}
TLLM_CHECK_WITH_INFO(mPassingConfigIndices.size() != 0, "No kernel found for the given output type");
}
size_t TrtllmGenGemmGatedActRunner::getWorkspaceSizeInBytes(int32_t m, int32_t n, int32_t k)
{
gemmGatedAct::GemmGatedActData gemmData;
gemmData.mProblemDimensions.mM = mOptions.transposeMmaOutput ? n : m;
gemmData.mProblemDimensions.mN = mOptions.transposeMmaOutput ? m : n;
gemmData.mProblemDimensions.mK = k;
selectGemmConfig(m, n, k);
auto gemm = gemmGatedAct::GemmGatedActInterface();
auto const configs = gemm.getGemmConfigs();
TLLM_CHECK_WITH_INFO(
mSelectedConfigIndex.has_value(), "No valid kernel found for given param config and problem size");
auto const config = configs[mSelectedConfigIndex.value()];
return gemm.getWorkspaceSizeInBytes(config, gemmData);
}
void TrtllmGenGemmGatedActRunner::run(int32_t m, int32_t n, int32_t k, void const* a, float const* aScale,
void const* b, float const* bScale, void* c, float* cScale, float* cScaleGate, void* workspace, CUstream stream,
int device)
{
auto gemm = gemmGatedAct::GemmGatedActInterface();
gemmGatedAct::GemmGatedActData gemmData;
auto const configs = gemm.getGemmConfigs();
TLLM_CHECK_WITH_INFO(
mSelectedConfigIndex.has_value(), "No valid kernel found for given param config and problem size");
auto const& config = configs[mSelectedConfigIndex.value()];
// Dims
gemmData.mProblemDimensions.mM = mOptions.transposeMmaOutput ? n : m;
gemmData.mProblemDimensions.mN = mOptions.transposeMmaOutput ? m : n;
gemmData.mProblemDimensions.mK = k;
// Inputs
gemmData.mInputBuffers.mPtrA = mOptions.transposeMmaOutput ? b : a;
gemmData.mInputBuffers.mPtrSfA = mOptions.transposeMmaOutput ? bScale : aScale;
gemmData.mInputBuffers.mPtrB = mOptions.transposeMmaOutput ? a : b;
gemmData.mInputBuffers.mPtrSfB = mOptions.transposeMmaOutput ? aScale : bScale;
gemmData.mInputBuffers.mPtrScaleC = cScale;
gemmData.mInputBuffers.mPtrScaleGate = cScaleGate;
// Outputs
gemmData.mOutputBuffers.mPtrC = c;
int32_t multiProcessorCount;
cudaDeviceGetAttribute(&multiProcessorCount, cudaDevAttrMultiProcessorCount, device);
// FIXME once we start using all-reduce in the epilogue of the gemm this can be moved elsewhere
gemm.runInitBeforeWorldSync(config, gemmData, static_cast<void*>(stream));
auto const err = gemm.run(config, workspace, gemmData, static_cast<void*>(stream), multiProcessorCount);
TLLM_CHECK_WITH_INFO(err == 0, "Error occurred when running GEMM!");
}
void TrtllmGenGemmGatedActRunner::run(int32_t m, int32_t n, int32_t k, void const* a, void const* b, void* c,
float* cScale, float* cScaleGate, void* workspace, CUstream stream, int device)
{
run(m, n, k, a, /*aScale*/ nullptr, b, /*bScale*/ nullptr, c, cScale, cScaleGate, workspace, stream, device);
}
void TrtllmGenGemmGatedActRunner::selectGemmConfig(int32_t m, int32_t n, int32_t k)
{
auto const gemm = gemmGatedAct::GemmGatedActInterface();
auto const configs = gemm.getGemmConfigs();
gemmGatedAct::GemmGatedActData gemmData;
// Dims
gemmData.mProblemDimensions.mM = mOptions.transposeMmaOutput ? n : m;
gemmData.mProblemDimensions.mN = mOptions.transposeMmaOutput ? m : n;
gemmData.mProblemDimensions.mK = k;
for (auto const& configIndex : mPassingConfigIndices)
{
auto const& config = configs[configIndex];
// FIXME: We select the first valid config,
// but must instead choose the "best" config based on some heruistics.
auto isValidConfig = gemm.isValidConfig(config, gemmData);
if (isValidConfig)
{
mSelectedConfigIndex = configIndex;
return;
}
}
}
} // namespace kernels
} // namespace tensorrt_llm