TensorRT-LLMs/cpp/tensorrt_llm/kernels/qserveGemmPerChannel.cu
石晓伟 548b5b7310
Update TensorRT-LLM (#2532)
* blossom-ci.yml: run vulnerability scan on blossom

* open source efb18c1256f8c9c3d47b7d0c740b83e5d5ebe0ec

---------

Co-authored-by: niukuo <6831097+niukuo@users.noreply.github.com>
Co-authored-by: pei0033 <59505847+pei0033@users.noreply.github.com>
Co-authored-by: Kyungmin Lee <30465912+lkm2835@users.noreply.github.com>
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2024-12-04 21:16:56 +08:00

609 lines
27 KiB
Plaintext

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Implemented by Haotian Tang and Shang Yang.
// @article{lin2024qserve,
// title={QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving},
// author={Lin*, Yujun and Tang*, Haotian and Yang*, Shang and Zhang, Zhekai and Xiao, Guangxuan and Gan, Chuang and
// Han, Song}, journal={arXiv preprint arXiv:2405.04532}, year={2024}
// }
#include "qserveGemm.h"
#include <cuda_fp16.h>
#include <cuda_pipeline_primitives.h>
namespace tensorrt_llm
{
namespace kernels
{
namespace qserve
{
#define OP_M 16
#define OP_N 8
#define OP_K 32
#define INTRIN_M 16
#define INTRIN_N 16
#define INTRIN_K 32
#define WARP_SIZE 32
#define SMEM_PAD_A 0
#define SMEM_PAD_B 0
#define PACK_SIZE 16
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 4)
#define L2_CACHEHINT(size) ".L2::" #size "B"
#else
#define L2_CACHEHINT(size)
#endif
#define KERNEL_LAUNCH_CODE \
constexpr int NUM_WARPS = (CTA_M / WARP_M) * (CTA_N / WARP_N) * (CTA_K / WARP_K); \
constexpr int SCALES_SMEM_SIZE = (G >= CTA_K) ? (CTA_N * STAGES * 2) : (CTA_N * (CTA_K / G) * STAGES * 2); \
constexpr int kSmemByteSize \
= ((CTA_M * (CTA_K + SMEM_PAD_A) + CTA_N * (CTA_K + SMEM_PAD_B) / 2) * STAGES + SCALES_SMEM_SIZE) \
* sizeof(int8_t); \
if (kSmemByteSize >= 99 * 1024) \
{ \
printf( \
"This kernel requires %d Bytes of shared memory, which exceeds " \
"device limit.\n", \
kSmemByteSize); \
return; \
} \
int num_blocks_m = (num_out_feats + CTA_M - 1) / CTA_M; \
int num_blocks_n = num_out_channels / CTA_N / 1; \
const int log_tile = get_log_tile<8>((num_out_feats + CTA_M - 1) / CTA_M); \
const int tile_shift = 1 << log_tile; \
dim3 num_blocks(num_blocks_n* tile_shift, (num_blocks_m + tile_shift - 1) / tile_shift); \
dim3 threads_per_block(WARP_SIZE, NUM_WARPS); \
auto kernel_func = dense_kernel0<CTA_M, CTA_N, CTA_K, WARP_M, WARP_N, WARP_K, STAGES, G>; \
cudaFuncSetAttribute(kernel_func, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemByteSize); \
kernel_func<<<num_blocks, threads_per_block, kSmemByteSize, stream>>>(in_feats, kernel, wscales, ascales, w_szs, \
a_ssums, out_feats, num_in_feats, num_out_channels, num_in_channels);
template <int N>
inline __host__ __device__ int get_log_tile(int n)
{
if (N >= 8 && n >= 6)
return 3;
else if (N >= 4 && n >= 3)
return 2;
else if (N >= 2 && n >= 2)
return 1;
else
return 0;
}
inline __device__ uint2 get_block_idx_mapping(int blockIdx_x, int blockIdx_y, int log_tile)
{
return make_uint2((blockIdx_x >> log_tile), (blockIdx_y << log_tile) + ((blockIdx_x) & ((1 << (log_tile)) - 1)));
}
inline __device__ uint32_t cast_smem_ptr_to_uint(void const* const ptr)
{
uint32_t smem_int_ptr;
asm("{.reg .u64 smem_ptr; cvta.to.shared.u64 smem_ptr, %1; cvt.u32.u64 %0, "
"smem_ptr; }\n"
: "=r"(smem_int_ptr)
: "l"(ptr));
return smem_int_ptr;
}
inline __device__ void ldmatrix_m8n8_x4_b16(int8_t* shared_warp, int ax0_0, uint32_t addr)
{
asm volatile(
"ldmatrix.sync.aligned.m8n8.x4.shared.b16"
"{%0, %1, %2, %3}, [%4];"
: "=r"(((unsigned*) (shared_warp + (ax0_0 * 16)))[0]), "=r"(((unsigned*) (shared_warp + (ax0_0 * 16)))[1]),
"=r"(((unsigned*) (shared_warp + (ax0_0 * 16)))[2]), "=r"(((unsigned*) (shared_warp + (ax0_0 * 16)))[3])
: "r"(addr));
}
inline __device__ void ldmatrix_m8n8_x4_trans_b16(int8_t* shared_warp, int ax0_0, uint32_t addr)
{
asm volatile(
"ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
"{%0, %1, %2, %3}, [%4];"
: "=r"(((unsigned*) (shared_warp + (ax0_0 * 16)))[0]), "=r"(((unsigned*) (shared_warp + (ax0_0 * 16)))[1]),
"=r"(((unsigned*) (shared_warp + (ax0_0 * 16)))[2]), "=r"(((unsigned*) (shared_warp + (ax0_0 * 16)))[3])
: "r"(addr));
}
// function from lmdeploy
inline __device__ void cp_async_cg_A(uint32_t smem_int_ptr, uint4 const* __restrict__ src, bool mask)
{
int const cp_size = 16;
asm volatile("{"
" .reg .pred p;"
" setp.ne.b32 p, %0, 0;"
" @p cp.async.cg.shared.global" L2_CACHEHINT(128) " [%1], [%2], %3;"
"}" ::"r"((int)mask),
"r"(smem_int_ptr),
"l"(src),
"n"(cp_size));
}
__device__ inline void mma_m16n8k32(void* C_warp, void* A_shared_warp, void* B_shared_warp)
{
asm volatile(
"mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32"
"{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};"
: "=r"(((int*) C_warp)[0]), "=r"(((int*) C_warp)[1]), "=r"(((int*) C_warp)[2]), "=r"(((int*) C_warp)[3])
: "r"(((unsigned*) A_shared_warp)[0]), "r"(((unsigned*) A_shared_warp)[1]), "r"(((unsigned*) A_shared_warp)[2]),
"r"(((unsigned*) A_shared_warp)[3]), "r"(((unsigned*) B_shared_warp)[0]), "r"(((unsigned*) B_shared_warp)[1]),
"r"(((int*) C_warp)[0]), "r"(((int*) C_warp)[1]), "r"(((int*) C_warp)[2]), "r"(((int*) C_warp)[3]));
}
template <int CTA_M, int CTA_N, int CTA_K, int CTA_SIZE, int SHARED_K_ITERS, int STAGES>
__device__ inline void global_to_share_one_stage_A(int8_t const* src, int8_t* dst, int global_ncols, int cta_offset_m,
int cta_offset_n, int global_iter_k, int shared_iter_k, bool mask, bool* preds)
{
constexpr int total_global_iters = (CTA_M * CTA_K) / PACK_SIZE / CTA_SIZE;
constexpr int partial_global_iters = total_global_iters / SHARED_K_ITERS;
constexpr int cta_step_m_or_n = (CTA_SIZE * PACK_SIZE) / CTA_K;
constexpr int kSmemCol = CTA_K + SMEM_PAD_A;
int8_t* dst_hoisted = dst;
int8_t const* src_hoisted = src + global_iter_k * CTA_K;
if (mask)
{
#pragma unroll
for (int _global_iter = 0; _global_iter < partial_global_iters; ++_global_iter)
{
int global_iter = shared_iter_k * partial_global_iters + _global_iter;
void* dst_ptr = (void*) (dst_hoisted + global_iter * cta_step_m_or_n * kSmemCol);
uint4* src_ptr = (uint4*) (src_hoisted + global_iter * cta_step_m_or_n * global_ncols);
if constexpr (STAGES > 1)
{
uint32_t addr = cast_smem_ptr_to_uint(dst_ptr);
cp_async_cg_A(addr, src_ptr, preds[global_iter]);
}
else
{
if (preds[global_iter])
*(uint4*) dst_ptr = *src_ptr;
}
}
}
}
template <int CTA_M, int CTA_N, int CTA_K, int CTA_SIZE, int SHARED_K_ITERS, int STAGES>
__device__ inline void global_to_share_one_stage_B(int8_t const* src, int8_t* dst, int global_ncols, int cta_offset_m,
int cta_offset_n, int global_iter_k, int shared_iter_k, bool mask)
{
constexpr int total_global_iters = (CTA_N * CTA_K) / 32 / CTA_SIZE;
constexpr int NUM_WARPS = CTA_SIZE / WARP_SIZE;
constexpr int warps_per_row = CTA_K / 32;
constexpr int cta_step_m_or_n = NUM_WARPS / warps_per_row;
constexpr int kSmemCol = CTA_K;
int8_t* dst_hoisted = dst;
int8_t const* src_hoisted = src + global_iter_k * CTA_K * PACK_SIZE;
#pragma unroll
for (int global_iter = 0; global_iter < total_global_iters; ++global_iter)
{
void* dst_ptr = (void*) (dst_hoisted + global_iter * cta_step_m_or_n * kSmemCol * PACK_SIZE);
uint4* src_ptr = (uint4*) (src_hoisted + global_iter * cta_step_m_or_n * global_ncols * PACK_SIZE);
if constexpr (STAGES > 1)
{
uint32_t addr = cast_smem_ptr_to_uint(dst_ptr);
cp_async_cg_A(addr, src_ptr, mask);
}
else
{
if (mask)
*(uint4*) dst_ptr = *src_ptr;
}
}
}
template <int CTA_M, int CTA_N, int CTA_K, int CTA_SIZE, int STAGES, int G>
__device__ inline void global_to_share_one_stage_zeros(int8_t const* src, int8_t* dst, int global_ncols,
int cta_offset_m, int cta_offset_n, int global_iter_k, int shared_iter_k, bool mask)
{
constexpr int threads_needed = CTA_N / PACK_SIZE / 1;
constexpr int threads_used = threads_needed < CTA_SIZE ? threads_needed : CTA_SIZE;
constexpr int total_global_iters = CTA_N / PACK_SIZE / threads_used;
constexpr int threads_per_row = CTA_N / PACK_SIZE;
constexpr int kSmemCol = CTA_N;
bool local_mask = mask & (threadIdx.y * WARP_SIZE + threadIdx.x < threads_used);
int g_idx = global_iter_k * CTA_K / G;
void* dst_ptr = (void*) (dst + (threadIdx.x % threads_per_row) * PACK_SIZE);
uint4* src_ptr = (uint4*) (src + g_idx * global_ncols + cta_offset_n + (threadIdx.x % threads_per_row) * PACK_SIZE);
if (STAGES > 1)
{
uint32_t addr = cast_smem_ptr_to_uint(dst_ptr);
cp_async_cg_A(addr, src_ptr, local_mask);
}
else
{
if (local_mask)
{
*(uint4*) dst_ptr = *src_ptr;
}
}
}
template <int CTA_M, int CTA_N, int CTA_K, int CTA_SIZE, int STAGES>
__device__ inline void share_to_reg_one_stage_A(
int8_t* src, int8_t* dst, int warp_offset_m, int warp_offset_n, int k_0_1, int shared_iters)
{
constexpr int kSmemCol = CTA_K + SMEM_PAD_A;
int ld_col = (k_0_1 * INTRIN_K + (threadIdx.x / 16) * 16) / PACK_SIZE;
for (int shared_iter = 0; shared_iter < shared_iters; ++shared_iter)
{
int ld_row = warp_offset_m + shared_iter * INTRIN_M + (threadIdx.x % 16);
int ld_col_swizzled = ld_col ^ (ld_row / 2) & 3;
void* addr_ptr = (void*) (src + ld_row * kSmemCol + ld_col_swizzled * PACK_SIZE);
uint32_t addr = cast_smem_ptr_to_uint(addr_ptr);
ldmatrix_m8n8_x4_b16(dst, shared_iter, addr);
}
}
template <int WARP_K, int CTA_N, int CTA_K, int CTA_SIZE, int STAGES, int G>
__device__ inline void share_to_reg_one_stage_B(int8_t* src, int8_t* dst, int8_t* zeros, int8_t* scales_i8,
int warp_offset_m, int warp_offset_n, int k_0_0, int k_0_1, int shared_iters)
{
constexpr int kSmemCol = CTA_K + SMEM_PAD_B;
#pragma unroll
for (int shared_iter = 0; shared_iter < shared_iters; ++shared_iter)
{
uint4 loaded = *((uint4*) (src) + warp_offset_n / 32 * kSmemCol + shared_iter * 32 / 32 * kSmemCol
+ k_0_1 * INTRIN_K + threadIdx.x);
auto ptr = (uint32_t*) dst + shared_iter * 8;
ptr[0] = loaded.x & 0x0F0F0F0F;
ptr[4] = (loaded.x & 0xF0F0F0F0) >> 4;
ptr[2] = loaded.y & 0x0F0F0F0F;
ptr[6] = (loaded.y & 0xF0F0F0F0) >> 4;
ptr[1] = loaded.z & 0x0F0F0F0F;
ptr[5] = (loaded.z & 0xF0F0F0F0) >> 4;
ptr[3] = loaded.w & 0x0F0F0F0F;
ptr[7] = (loaded.w & 0xF0F0F0F0) >> 4;
}
}
template <int CTA_M, int CTA_N, int CTA_K, int WARP_M, int WARP_N, int WARP_K, int STAGES, int G>
__global__ void dense_kernel0(int8_t const* __restrict__ A, int8_t const* __restrict__ B,
half2 const* __restrict__ wscales, half const* __restrict__ ascales, half2 const* __restrict__ w_szs,
half const* __restrict__ a_ssums, half* __restrict__ C, int M, int64_t N, int64_t K)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
constexpr int NUM_WARPS_MN = CTA_M / WARP_M * CTA_N / WARP_N;
constexpr int NUM_WARPS = NUM_WARPS_MN * CTA_K / WARP_K;
constexpr int CTA_SIZE = NUM_WARPS * WARP_SIZE;
constexpr int CTA_SIZE_MN = NUM_WARPS_MN * WARP_SIZE;
constexpr int SLICES = CTA_K / WARP_K;
int blockIdx_n = blockIdx.x;
int blockIdx_m = blockIdx.y;
int const log_tile = get_log_tile<8>((M + CTA_M - 1) / CTA_M);
uint2 const block_idx_mapping = get_block_idx_mapping(blockIdx_n, blockIdx_m, log_tile);
blockIdx_n = block_idx_mapping.x;
blockIdx_m = block_idx_mapping.y;
int C_warp[CTA_M * CTA_N / CTA_SIZE_MN];
constexpr int kSmemPadKA = CTA_K + SMEM_PAD_A;
constexpr int kSmemPadKB = CTA_K + SMEM_PAD_B;
constexpr int kSmemSizeAPerStage = CTA_M * kSmemPadKA;
constexpr int kSmemSizeBPerStage = CTA_N * kSmemPadKB / 2;
constexpr int kSmemSizeA = kSmemSizeAPerStage * STAGES;
constexpr int kSmemSizeB = kSmemSizeBPerStage * STAGES;
constexpr int kSmemSizeScales = CTA_N * STAGES;
extern __shared__ int8_t mem_shared[];
int8_t* A_shared = mem_shared;
int8_t* B_shared = mem_shared + kSmemSizeA;
int8_t* zeros_shared = mem_shared + kSmemSizeA + kSmemSizeB;
int8_t* scales_i8_shared = mem_shared + kSmemSizeA + kSmemSizeB + kSmemSizeScales;
int8_t A_shared_warp_[2][WARP_M * WARP_K / WARP_SIZE];
int8_t B_shared_warp_[2][WARP_N * WARP_K / WARP_SIZE];
constexpr int A_total_global_iters = (CTA_M * CTA_K) / PACK_SIZE / CTA_SIZE;
constexpr int A_src_step_m = (CTA_SIZE * PACK_SIZE) / CTA_K;
constexpr int A_warp_step_m = (WARP_SIZE * PACK_SIZE) / CTA_K;
constexpr int A_threads_per_row = CTA_K / PACK_SIZE;
constexpr int B_warps_per_row = CTA_K / 32;
int cta_offset_m = blockIdx_m * CTA_M;
int cta_offset_n = blockIdx_n * CTA_N;
int warp_mn = threadIdx.y % NUM_WARPS_MN;
int slice_id = threadIdx.y / NUM_WARPS_MN;
int warp_offset_m = (warp_mn % (CTA_M / WARP_M)) * WARP_M;
int warp_offset_n = (warp_mn / (CTA_M / WARP_M)) * WARP_N;
int warp_offset_k = slice_id * WARP_K;
for (int i = 0; i < CTA_M * CTA_N / CTA_SIZE_MN; i++)
C_warp[i] = 0;
int gemm_iters = (K + CTA_K - 1) / CTA_K;
int k_0_0_ld = 0;
int k_0_0 = 0;
constexpr int prologue_stages = STAGES == 1 ? 1 : STAGES - 1;
int A_hoisted_row = threadIdx.y * A_warp_step_m + (threadIdx.x / A_threads_per_row);
int A_hoisted_col = (threadIdx.x % A_threads_per_row);
int A_hoisted_col_swizzled = A_hoisted_col ^ (A_hoisted_row / 2) & 3;
int8_t* A_shared_hoisted = A_shared + A_hoisted_row * kSmemPadKA + A_hoisted_col_swizzled * PACK_SIZE;
int8_t* B_shared_hoisted = B_shared + (threadIdx.y % B_warps_per_row) * 32 * PACK_SIZE
+ (threadIdx.y / B_warps_per_row) * kSmemPadKB * PACK_SIZE + threadIdx.x * PACK_SIZE;
int8_t const* A_hoisted = A + cta_offset_m * K + A_hoisted_row * K + A_hoisted_col * PACK_SIZE;
int8_t const* B_hoisted = B + cta_offset_n / 32 * K * PACK_SIZE + (threadIdx.y % B_warps_per_row) * 32 * PACK_SIZE
+ (threadIdx.y / B_warps_per_row) * K * PACK_SIZE + threadIdx.x * PACK_SIZE;
bool A_g2s_preds[A_total_global_iters];
#pragma unroll
for (int i = 0; i < A_total_global_iters; i++)
{
A_g2s_preds[i] = (cta_offset_m + A_hoisted_row + i * A_src_step_m) < M;
}
int* C_shared = reinterpret_cast<int*>(mem_shared);
#pragma unroll
for (k_0_0_ld = 0; k_0_0_ld < prologue_stages; ++k_0_0_ld)
{
global_to_share_one_stage_A<CTA_M, CTA_N, CTA_K, CTA_SIZE, 1, STAGES>(A_hoisted,
A_shared_hoisted + k_0_0_ld * kSmemSizeAPerStage, K, cta_offset_m, cta_offset_n, k_0_0_ld, 0, true,
A_g2s_preds);
global_to_share_one_stage_B<CTA_M, CTA_N, CTA_K, CTA_SIZE, 1, STAGES>(B_hoisted,
B_shared_hoisted + k_0_0_ld * kSmemSizeBPerStage, K, cta_offset_m, cta_offset_n, k_0_0_ld, 0, true);
if constexpr (STAGES > 1)
__pipeline_commit();
}
if constexpr (STAGES > 1)
__pipeline_wait_prior(STAGES - 2);
__syncthreads();
share_to_reg_one_stage_A<CTA_M, CTA_N, CTA_K, CTA_SIZE, STAGES>(
A_shared + warp_offset_k, A_shared_warp_[0], warp_offset_m, warp_offset_n, 0, WARP_M / INTRIN_M);
share_to_reg_one_stage_B<CTA_M, CTA_N, CTA_K, CTA_SIZE, STAGES, G>(B_shared + warp_offset_k * PACK_SIZE,
B_shared_warp_[0], zeros_shared, scales_i8_shared, warp_offset_m, warp_offset_n, 0, 0, WARP_N / 32);
constexpr int SHARED_K_ITERS = WARP_K / INTRIN_K;
for (; k_0_0 < gemm_iters; ++k_0_0, ++k_0_0_ld)
{
int ld_stage = k_0_0_ld % STAGES;
int compute_stage = k_0_0 % STAGES;
int8_t* A_shared_this_compute_stage;
int8_t* B_shared_this_compute_stage;
int8_t* zeros_shared_this_compute_stage;
int8_t* scales_i8_shared_this_compute_stage;
for (int iter_k = 0; iter_k < SHARED_K_ITERS; ++iter_k)
{
A_shared_this_compute_stage = A_shared + compute_stage * kSmemSizeAPerStage + warp_offset_k;
B_shared_this_compute_stage = B_shared + compute_stage * kSmemSizeBPerStage + warp_offset_k * PACK_SIZE;
zeros_shared_this_compute_stage = zeros_shared + (compute_stage) *CTA_N;
scales_i8_shared_this_compute_stage = scales_i8_shared + (compute_stage) *CTA_N;
share_to_reg_one_stage_A<CTA_M, CTA_N, CTA_K, CTA_SIZE, STAGES>(A_shared_this_compute_stage,
A_shared_warp_[(iter_k + 1) % 2], warp_offset_m, warp_offset_n, (iter_k + 1) % SHARED_K_ITERS,
WARP_M / INTRIN_M);
share_to_reg_one_stage_B<CTA_M, CTA_N, CTA_K, CTA_SIZE, STAGES, G>(B_shared_this_compute_stage,
B_shared_warp_[(iter_k + 1) % 2], zeros_shared_this_compute_stage, scales_i8_shared_this_compute_stage,
warp_offset_m, warp_offset_n, k_0_0 + (iter_k == SHARED_K_ITERS - 1), (iter_k + 1) % SHARED_K_ITERS,
WARP_N / 32);
int8_t* A_shared_warp = A_shared_warp_[iter_k % 2];
int8_t* B_shared_warp = B_shared_warp_[iter_k % 2];
for (int j_0_4 = 0; j_0_4 < WARP_N / INTRIN_N; ++j_0_4)
{
for (int i_0_3 = 0; i_0_3 < WARP_M / INTRIN_M; ++i_0_3)
{
mma_m16n8k32((void*) (C_warp + i_0_3 * WARP_N / INTRIN_N * 8 + j_0_4 * 8),
(void*) (A_shared_warp + i_0_3 * 16), (void*) (B_shared_warp + j_0_4 * 16));
mma_m16n8k32((void*) (C_warp + i_0_3 * WARP_N / INTRIN_N * 8 + j_0_4 * 8 + 4),
(void*) (A_shared_warp + i_0_3 * 16), (void*) (B_shared_warp + j_0_4 * 16 + 8));
}
}
if (iter_k < SHARED_K_ITERS - 1)
{
if constexpr (STAGES == 1)
__syncthreads();
global_to_share_one_stage_A<CTA_M, CTA_N, CTA_K, CTA_SIZE, WARP_K / INTRIN_K, STAGES>(A_hoisted,
A_shared_hoisted + ld_stage * kSmemSizeAPerStage, K, cta_offset_m, cta_offset_n, k_0_0_ld, iter_k,
k_0_0_ld < gemm_iters, A_g2s_preds);
global_to_share_one_stage_B<CTA_M, CTA_N, CTA_K, CTA_SIZE, WARP_K / INTRIN_K, STAGES>(B_hoisted,
B_shared_hoisted + ld_stage * kSmemSizeBPerStage, K, cta_offset_m, cta_offset_n, k_0_0_ld, iter_k,
k_0_0_ld < gemm_iters);
}
if (iter_k == SHARED_K_ITERS - 2)
{
if constexpr (STAGES == 1 && SHARED_K_ITERS > 2)
{
__syncthreads();
}
global_to_share_one_stage_A<CTA_M, CTA_N, CTA_K, CTA_SIZE, WARP_K / INTRIN_K, STAGES>(A_hoisted,
A_shared_hoisted + ld_stage * kSmemSizeAPerStage, K, cta_offset_m, cta_offset_n, k_0_0_ld,
iter_k + 1, k_0_0_ld < gemm_iters, A_g2s_preds);
global_to_share_one_stage_B<CTA_M, CTA_N, CTA_K, CTA_SIZE, WARP_K / INTRIN_K, STAGES>(B_hoisted,
B_shared_hoisted + ld_stage * kSmemSizeBPerStage, K, cta_offset_m, cta_offset_n, k_0_0_ld,
iter_k + 1, k_0_0_ld < gemm_iters);
if constexpr (STAGES > 1)
{
__pipeline_commit();
__pipeline_wait_prior(STAGES - 2);
}
compute_stage = (k_0_0 + 1) % STAGES;
__syncthreads();
}
}
}
__pipeline_commit();
__pipeline_wait_prior(0);
__syncthreads();
if constexpr (SLICES > 1)
{
#pragma unroll
for (int z = 0; z < SLICES; ++z)
{
if (slice_id == z)
{
#pragma unroll
for (int ax0_0_1 = 0; ax0_0_1 < WARP_M / INTRIN_M; ++ax0_0_1)
{
#pragma unroll
for (int ax1_0_1 = 0; ax1_0_1 < WARP_N / INTRIN_N; ++ax1_0_1)
{
#pragma unroll
for (int local_id = 0; local_id < OP_M * 16 / WARP_SIZE; ++local_id)
{
if (z > 0)
{
C_warp[ax0_0_1 * WARP_N / INTRIN_N * 8 + ax1_0_1 * 8 + local_id]
+= C_shared[warp_offset_m * CTA_N + ax0_0_1 * OP_M * CTA_N + warp_offset_n
+ ax1_0_1 * 16 + ((local_id % 4) / 2 * 8 + (threadIdx.x / 4)) * CTA_N
+ (local_id / 4) * 8 + (local_id % 2) + (threadIdx.x % 4) * 2];
}
C_shared[warp_offset_m * CTA_N + ax0_0_1 * OP_M * CTA_N + warp_offset_n + ax1_0_1 * 16
+ ((local_id % 4) / 2 * 8 + (threadIdx.x / 4)) * CTA_N + (local_id / 4) * 8
+ (local_id % 2) + (threadIdx.x % 4) * 2]
= C_warp[ax0_0_1 * WARP_N / INTRIN_N * 8 + ax1_0_1 * 8 + local_id];
};
}
}
}
__syncthreads();
}
if (slice_id == 0)
{
#pragma unroll
for (int ax0_0_1 = 0; ax0_0_1 < WARP_M / INTRIN_M; ++ax0_0_1)
{
#pragma unroll
for (int ax1_0_1 = 0; ax1_0_1 < WARP_N / INTRIN_N; ++ax1_0_1)
{
#pragma unroll
for (int local_id = 0; local_id < OP_M * 16 / WARP_SIZE; ++local_id)
{
C_warp[ax0_0_1 * WARP_N / INTRIN_N * 8 + ax1_0_1 * 8 + local_id]
= C_shared[warp_offset_m * CTA_N + ax0_0_1 * OP_M * CTA_N + warp_offset_n + ax1_0_1 * 16
+ ((local_id % 4) / 2 * 8 + (threadIdx.x / 4)) * CTA_N + (local_id / 4) * 8
+ (local_id % 2) + (threadIdx.x % 4) * 2];
};
}
}
}
}
int row_wb_thd = cta_offset_m + warp_offset_m + (threadIdx.x / 4);
int col_wb_thd = cta_offset_n + warp_offset_n + (threadIdx.x % 4) * 2;
if (slice_id == 0)
{
for (int ax0_0_1 = 0; ax0_0_1 < WARP_M / INTRIN_M; ++ax0_0_1)
{
int row_wb_1 = row_wb_thd + ax0_0_1 * OP_M;
for (int ax1_0_1 = 0; ax1_0_1 < WARP_N / INTRIN_N; ++ax1_0_1)
{
int col_wb_1 = col_wb_thd + ax1_0_1 * 16;
int* C_warp_local = C_warp + ax0_0_1 * WARP_N / INTRIN_N * 8 + ax1_0_1 * 8;
for (int local_id = 0; local_id < OP_M * 16 / WARP_SIZE; local_id += 2)
{
int row_wb = row_wb_1 + (local_id % 4) / 2 * 8;
if (row_wb < M)
{
int col_wb = col_wb_1 + (local_id / 4) * 8 + (local_id % 2);
float2 wscale = __half22float2(*(wscales + col_wb / 2));
float2 w_sz = __half22float2(*(w_szs + col_wb / 2));
float ascale = __half2float(ascales[row_wb]);
float a_ssum = __half2float(a_ssums[row_wb]);
float2 psums = make_float2(
__int2float_rn(C_warp_local[local_id]), __int2float_rn(C_warp_local[local_id + 1]));
psums.x = psums.x * wscale.x * ascale - w_sz.x * a_ssum;
psums.y = psums.y * wscale.y * ascale - w_sz.y * a_ssum;
*reinterpret_cast<half2*>(C + row_wb * N + col_wb) = __float22half2_rn(psums);
}
};
}
}
}
#endif
}
void qserveGemmPerChannelLaunch(ParamsPerChannel const& params, cudaStream_t stream)
{
auto in_feats = params.A;
auto kernel = params.B;
auto w_szs = reinterpret_cast<half2 const*>(params.s1_szeros);
auto a_ssums = params.act_sums;
auto wscales = reinterpret_cast<half2 const*>(params.s1_scales);
auto ascales = params.act_scales;
auto out_feats = params.C;
int num_out_feats = params.m;
int num_out_channels = params.n;
int num_in_feats = params.m;
int num_in_channels = params.k;
constexpr int G = 128;
if (num_out_feats > 256)
{
constexpr int CTA_M = 128;
constexpr int CTA_N = 128;
constexpr int CTA_K = 64;
constexpr int WARP_M = 64;
constexpr int WARP_N = 32;
constexpr int WARP_K = 64;
constexpr int STAGES = 3;
KERNEL_LAUNCH_CODE
}
else if (num_out_feats >= 128)
{
constexpr int CTA_M = 64;
constexpr int CTA_N = 64;
constexpr int CTA_K = 64;
constexpr int WARP_M = 32;
constexpr int WARP_N = 32;
constexpr int WARP_K = 64;
constexpr int STAGES = 4;
KERNEL_LAUNCH_CODE
}
else
{
constexpr int CTA_M = 32;
constexpr int CTA_N = 64;
constexpr int CTA_K = 128;
constexpr int WARP_M = 32;
constexpr int WARP_N = 32;
constexpr int WARP_K = 64;
constexpr int STAGES = 3;
KERNEL_LAUNCH_CODE
}
}
void QServeGemmRunner::gemmPerChannel(ParamsPerChannel const& params, cudaStream_t stream)
{
qserveGemmPerChannelLaunch(params, stream);
}
} // namespace qserve
} // namespace kernels
} // namespace tensorrt_llm