mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-25 21:22:57 +08:00
test: add test cases for 0.19 release (#3608) * fix test name * add quickstart test for nemotron-ultra * add rcca multi-node test case for deepseek-v3 * add rcca info --------- squash (#3642) fix: nvbugs/5187237: fix deterministic mode crash (#3448) * nvbugs/5187237 nvbugs/5112075: fix deterministic mode error * remove waive * Revert "remove waive" This reverts commit 0bf5486d19906d692bfb7a6262333c296b0087ac. * revert ar fusion --------- update fp8 doc (#3647) tests: change qa perf test to trtllm-bench (#3619) fix: FP8 quantized lm_head (NvBug 5214229) (#3567) infra: Add PR approval protection for the release branch (#3634) fix: nvbugs/5231298: pytorch allreduce issue (#3673) Fix: nvbugs/5222698 variable not defined (#3630) * Fix: nvbugs/5222698 variable not defined * Tidy code --------- test:sync waives.txt from main branch by disabling test_perf/gpt_350m-cppmanager case (#3685) test:restore fp8 kv cache testing for L0 (#3671) doc: Update DeepSeek perf docs (#3693) * Update DeepSeek perf docs * update * Apply suggestions from code review --------- tests: waive test_llm_multi_node (#3664) fix: update test_user_buffers_mm_add_prologue atol (#3711) Fix: cherry-pick hmac encryption from main branch (#3635) * security fix cherry-pick changes from main * fix hmac in remote mpi session (#3649) --------- Un-waive DS-V3-Lite tests. (#3621) fix: FP8 kv accuracy (#3675) * fix FP8 kv accuracy * update doc --------- Fix script options for engines. (#3622) unwaive multi-node test (#3721) chore : Split more tests out of gpt tests (#3524) (#3674) doc:add torch examples link into torch backend documentation (#3749) test: Get Eagle tests working (#3593) (#3722) Waive L0 test (#3756) waive failed case in perf test, change default max_batch_size to 512 and write config.json to output log (#3656) Update ds v3 parameters in stress test. (#3676) waive gemma on L20 (#3766) https://nvbugs/5141291: Fix convert.py script for Qwen model. (#3758) Include Qwen2VLDecoderLayer in the smooth_qwen2_model function. fix: PP4 fixes and cleanup (#3688) remove benchmark test list (#3643) skip disagg deepseek test if sm!=90 (#3720) test: skip failed cases on B200 (#3710) * add skip condition to tests * fix error --------- test: [nvbug: 5234494] skip_pre_ada for fp8 cases (#3718) * skip_pre_ada for fp8 cases * update * update after rebase --------- add know issue to deepseek doc. (#3800) Fix ModelOpt Mixtral AWQ OOM (#3714) (#3761) Waive L0 tests (#3826) fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793) * Reduce memory usage in fused moe op associated with AutoTuning. * Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens. * Add free_memory logic of workspace in min_latency_mode fused moe path. * Fix fused_moe fallback issue. (#3652) min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression. --------- [doc] Better document for Draft-Target-Model (DTM) speculative decoding (#3797) Fix pre-commit Fix again Address some review comments for the MI Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com> Co-authored-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
183 lines
6.9 KiB
Python
183 lines
6.9 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import pytest
|
|
|
|
from tensorrt_llm.llmapi import LLM
|
|
from tensorrt_llm.models.modeling_utils import QuantConfig
|
|
from tensorrt_llm.quantization import QuantAlgo
|
|
|
|
from ..conftest import llm_models_root, skip_post_blackwell, skip_pre_ada
|
|
from .accuracy_core import MMLU, CnnDailymail, LlmapiAccuracyTestHarness
|
|
|
|
|
|
class TestLlama3_1_8B(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "meta-llama/Llama-3.1-8B"
|
|
MODEL_PATH = f"{llm_models_root()}/llama-3.1-model/Meta-Llama-3.1-8B"
|
|
|
|
@skip_pre_ada
|
|
@skip_post_blackwell
|
|
def test_fp8_rowwise(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8_PER_CHANNEL_PER_TOKEN)
|
|
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestMixtral8x7B(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "mistralai/Mixtral-8x7B-v0.1"
|
|
MODEL_PATH = f"{llm_models_root()}/Mixtral-8x7B-v0.1"
|
|
|
|
@pytest.mark.skip_less_device(2)
|
|
def test_tp2(self):
|
|
with LLM(self.MODEL_PATH, tensor_parallel_size=2) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestQwen2_7BInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "Qwen/Qwen2-7B-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/Qwen2-7B-Instruct"
|
|
EXTRA_EVALUATOR_KWARGS = dict(
|
|
apply_chat_template=True,
|
|
system_prompt=
|
|
"You are a helpful assistant, please summarize the article entered by the user with one or two sentences."
|
|
)
|
|
|
|
def test_auto_dtype(self):
|
|
with LLM(self.MODEL_PATH) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
|
|
@skip_post_blackwell
|
|
def test_weight_only(self):
|
|
quant_config = QuantConfig(QuantAlgo.W8A16)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
|
|
@skip_pre_ada
|
|
def test_fp8(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
|
|
@pytest.mark.skip_less_device(2)
|
|
def test_tp2(self):
|
|
with LLM(self.MODEL_PATH, tensor_parallel_size=2) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
|
|
|
|
class TestQwen2_5_0_5BInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "Qwen/Qwen2.5-0.5B-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/Qwen2.5-0.5B-Instruct"
|
|
EXTRA_EVALUATOR_KWARGS = dict(
|
|
apply_chat_template=True,
|
|
system_prompt=
|
|
"You are a helpful assistant, please summarize the article entered by the user with one or two sentences."
|
|
)
|
|
|
|
def test_auto_dtype(self):
|
|
with LLM(self.MODEL_PATH) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_pre_ada
|
|
def test_fp8(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestQwen2_5_1_5BInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/Qwen2.5-1.5B-Instruct"
|
|
EXTRA_EVALUATOR_KWARGS = dict(
|
|
apply_chat_template=True,
|
|
system_prompt=
|
|
"You are a helpful assistant, please summarize the article entered by the user with one or two sentences."
|
|
)
|
|
|
|
def test_auto_dtype(self):
|
|
with LLM(self.MODEL_PATH) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_post_blackwell
|
|
def test_weight_only(self):
|
|
quant_config = QuantConfig(QuantAlgo.W8A16)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
|
|
@skip_pre_ada
|
|
def test_fp8(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestQwen2_5_7BInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/Qwen2.5-7B-Instruct"
|
|
EXTRA_EVALUATOR_KWARGS = dict(
|
|
apply_chat_template=True,
|
|
system_prompt=
|
|
"You are a helpful assistant, please summarize the article entered by the user with one or two sentences."
|
|
)
|
|
|
|
def test_auto_dtype(self):
|
|
with LLM(self.MODEL_PATH) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_pre_ada
|
|
def test_fp8(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|