TensorRT-LLMs/tests/unittest/_torch/test_trtllm_decoder.py
Daniel Cámpora 1299f27c74
fix: Fix C++ decoder synchronization in PyTorch (#3106)
* Use updateDecoderBuffers in python decoder.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Fix synchronize in trtllm decoder.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Enable by default.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Use guided_decoder to setup seqslots and free them.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Use always decode_async and update_requests.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Update decoder buffers.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Fix speculative decoding tests.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Send new_tensors_host instead of assuming dict.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Make default False in enable_trtllm_decoder.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Partially fix mtp, partially fix py_executor.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Update request states before sending disagg ctx cache.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Fix disagg test for torch decoder.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Make isend_tensor_list and recv_tensor_list for sending the tensors_host.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Formatting.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Fix rebase.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Add disagg serving case to guided decoder.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Get overlap scheduling to work.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Update cutlass to main.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Update after rebasing.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Formatting.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Update to use decode async and update requests.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Properly pass information to update_requests

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Formatting.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Make disaggregated serving a step closer to working.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Fix rebase.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Fix rebase and format.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Copy new device tokens more pythonic.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Restore MTP add dummy reqs.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Add ordereddict import to py_executor.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Formatting.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Added seq slot manager. Add test.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Use transmission for single tensor except when list of tensors is received.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Add TRTLLMDecoder allocation to estimate max kv cache tokens.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Add stream synchronization

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Formatting.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Make memory calculation of decoder adapt to the chosen decoder. Recognize decoder option passed in executorconfig. Make overlap scheduler test run on TinyLlama.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Format

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Add decoder creation to estimate max kv.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Formatting.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

* Update submodule UCXX inline with main.

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>

---------

Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>
2025-04-23 23:55:27 +08:00

83 lines
2.7 KiB
Python

import json
from pathlib import Path
import pytest
from utils.llm_data import llm_models_root
from utils.util import similar
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig as TRT_KvCacheConfig
# A test case of mmlu_llama from lm_eval
@pytest.fixture(scope="module")
def test_case():
with open(Path(__file__).parent / "test_overlap_scheduler_input.json") as f:
return json.load(f)
@pytest.fixture(scope="module")
def model_path():
return llm_models_root() / "llama-models-v2/TinyLlama-1.1B-Chat-v1.0"
def create_llm(model_dir):
"""Create LLM with specific overlap scheduler setting"""
pytorch_config = PyTorchConfig(use_cuda_graph=True,
enable_trtllm_decoder=True)
trt_kv_cache_config = TRT_KvCacheConfig(enable_block_reuse=False)
return LLM(
model=str(model_dir),
tensor_parallel_size=1,
trust_remote_code=True,
enable_chunked_prefill=True,
pytorch_backend_config=pytorch_config,
kv_cache_config=trt_kv_cache_config,
max_num_tokens=
128 # Only one request longer than max_num_tokens is required to test chunked prefill
)
def test_trtllm_decoder(model_path, test_case):
prompts = [
"Magellan and Elcano lead the first",
"The capital of France is",
"The capital of Bolivia is",
]
expected_outputs = [["circumnavigation of the world."], ["Paris."],
["La Paz."]]
# Test configuration
max_new_tokens = test_case["max_new_tokens"]
temperature = test_case["temperature"]
top_p = test_case["top_p"]
stop_words = test_case["stop_words"]
sampling_config = SamplingParams(max_tokens=max_new_tokens,
beam_width=1,
stop=stop_words,
temperature=temperature,
top_p=top_p)
# Test with overlap scheduler disabled
llm = create_llm(model_path)
outputs = llm.generate(prompts,
sampling_params=sampling_config,
use_tqdm=True)
texts = [[completion.text for completion in request_output.outputs]
for request_output in outputs]
llm.shutdown()
# Remove any text after \n\n, consider texts is a list of list of strings
texts = [[text.split('\n\n')[0] for text in request_output]
for request_output in texts]
# Verify outputs are consistent
for text, expected in zip(texts, expected_outputs):
assert similar(text, expected)