TensorRT-LLMs/tensorrt_llm/_torch/speculative/utils.py
Fanrong Li 39bba63758
[TRTLLM-4983] feat: enable overlap scheduler between draft forwards (#4802)
Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>
2025-06-15 23:09:16 +08:00

103 lines
4.5 KiB
Python

from .eagle3 import (Eagle3OneModelDecoder, Eagle3OneModelSpecMetadata,
Eagle3OneModelWorker, Eagle3ResourceManager, Eagle3Sampler,
Eagle3SpecMetadata)
from .mtp import (MTPEagleWorker, MTPHiddenStatesManager, MTPSampler,
MTPSpecMetadata, MTPWorker)
from .ngram import NGramPoolManager
def get_spec_metadata(spec_config,
max_num_requests,
max_num_tokens,
spec_resource_manager=None,
is_draft_model=False):
if spec_config.spec_dec_mode.is_mtp():
return MTPSpecMetadata(
max_draft_tokens=spec_config.max_draft_tokens,
spec_dec_mode=spec_config.spec_dec_mode,
mtp_num_modules=spec_config.num_nextn_predict_layers,
max_num_requests=max_num_requests,
mtp_hidden_states_manager=spec_resource_manager)
elif spec_config.spec_dec_mode.is_eagle3():
return Eagle3SpecMetadata(max_draft_tokens=spec_config.max_draft_tokens,
spec_dec_mode=spec_config.spec_dec_mode,
max_num_requests=max_num_requests,
num_layers=spec_config.num_layers,
hidden_size=spec_config.hidden_size,
max_num_tokens=max_num_tokens,
dtype=spec_config.dtype,
is_draft_model=is_draft_model,
eagle3_resource_manager=spec_resource_manager)
elif spec_config.spec_dec_mode.is_eagle3_one_model():
return Eagle3OneModelSpecMetadata(
max_draft_tokens=spec_config.max_draft_tokens,
spec_dec_mode=spec_config.spec_dec_mode,
max_num_requests=max_num_requests,
num_layers=spec_config.num_layers,
hidden_size=spec_config.hidden_size,
max_num_tokens=max_num_tokens)
else:
return None
def get_spec_resource_manager(spec_config,
model_engine,
draft_model_engine=None):
model_config = model_engine.model.config
max_num_requests = model_engine.batch_size
max_seq_len = model_engine.max_seq_len
max_num_tokens = model_engine.max_num_tokens
if spec_config.spec_dec_mode.is_mtp_eagle():
if spec_config.use_relaxed_acceptance_for_thinking:
return MTPHiddenStatesManager(spec_config, model_config.torch_dtype,
model_config.hidden_size,
max_num_requests)
else:
return None
elif spec_config.spec_dec_mode.is_mtp():
return MTPHiddenStatesManager(spec_config, model_config.torch_dtype,
model_config.hidden_size,
max_num_requests)
elif spec_config.spec_dec_mode.is_ngram():
return NGramPoolManager(spec_config, max_num_requests)
elif spec_config.spec_dec_mode.is_eagle3():
assert draft_model_engine is not None, "Draft model engine is required for Eagle3 two model flow."
draft_model_config = draft_model_engine.model.config
return Eagle3ResourceManager(spec_config,
draft_model_config.torch_dtype,
model_config.hidden_size, max_num_requests,
max_seq_len, max_num_tokens)
else:
return None
def get_spec_decoder(max_seq_len, spec_config):
if spec_config.spec_dec_mode.is_mtp():
return MTPSampler(max_seq_len, spec_config)
elif spec_config.spec_dec_mode.is_eagle3():
return Eagle3Sampler(max_seq_len)
elif spec_config.spec_dec_mode.is_eagle3_one_model():
return Eagle3OneModelDecoder(max_seq_len, spec_config)
else:
return None
def get_num_spec_layers(spec_config):
if spec_config.spec_dec_mode.is_mtp():
return spec_config.num_nextn_predict_layers
elif spec_config.spec_dec_mode.is_eagle3_one_model():
return 1
else:
return 0
def get_spec_worker(spec_config, mapping):
if spec_config.spec_dec_mode.is_mtp():
return MTPWorker(spec_config)
elif spec_config.spec_dec_mode.is_mtp_eagle():
return MTPEagleWorker(spec_config)
elif spec_config.spec_dec_mode.is_eagle3_one_model():
return Eagle3OneModelWorker(spec_config, mapping)
else:
return None