mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-30 15:43:19 +08:00
122 lines
4.7 KiB
Python
122 lines
4.7 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Model pytorch yaml config for trtllm-bench perf tests
|
|
"""
|
|
|
|
|
|
def get_model_yaml_config(model_label: str,
|
|
lora_dirs: list[str] = None) -> dict:
|
|
"""
|
|
Return the yaml config corresponding to the model label.
|
|
Args:
|
|
model_label: model label from self._config.to_string()
|
|
Returns:
|
|
dict: yaml config
|
|
"""
|
|
base_config = {
|
|
'print_iter_log': True,
|
|
'use_cuda_graph': True,
|
|
'cuda_graph_padding_enabled': True,
|
|
}
|
|
if 'kv_cache_dtype' in model_label:
|
|
base_config.update({
|
|
'kv_cache_dtype':
|
|
model_label.split('kv_cache_dtype:')[1].split('-')[0]
|
|
})
|
|
|
|
# Pattern-based configurations for models matching specific substrings
|
|
# This allows for flexible configuration of models based on naming patterns
|
|
pattern_configs = [
|
|
# DeepSeek R1 models with MTP speculative decoding
|
|
{
|
|
'patterns': [
|
|
'deepseek_r1-bench-pytorch-float16-maxbs:1-maxnt:8192-input_output_len:1000,2000-quant:fp8-reqs:10-ep:4-gpus:8',
|
|
'deepseek_r1_nvfp4-bench-pytorch-float16-maxbs:1-maxnt:8192-input_output_len:1000,2000-quant:nvfp4-reqs:10-ep:4-tp:8-gpus:8'
|
|
],
|
|
'config': {
|
|
'enable_attention_dp': True,
|
|
'use_cuda_graph': True,
|
|
'speculative_config': {
|
|
'decoding_type': 'MTP',
|
|
'num_nextn_predict_layers': 3
|
|
}
|
|
}
|
|
},
|
|
# DeepSeek R1 models with large batch sizes and cuda graph padding
|
|
{
|
|
'patterns': [
|
|
'deepseek_r1-bench-pytorch-float16-maxbs:384-maxnt:1536-input_output_len:1000,2000-quant:nvfp4-reqs:49152-con:3072-ep:8-gpus:8',
|
|
'deepseek_r1_nvfp4-bench-pytorch-float16-maxbs:384-maxnt:1536-input_output_len:1000,2000-quant:nvfp4-reqs:49152-con:3072-ep:8-gpus:8'
|
|
],
|
|
'config': {
|
|
'enable_attention_dp': True,
|
|
'cuda_graph_padding_enabled': True,
|
|
'cuda_graph_batch_sizes':
|
|
[1, 2, 4, 8, 16, 32, 64, 128, 256, 384]
|
|
}
|
|
},
|
|
# DeepSeek R1 model with specific batch size 128
|
|
{
|
|
'patterns':
|
|
'deepseek_r1-bench-pytorch-float16-maxbs:128-maxnt:1127-input_output_len:1000,2000-quant:fp8-reqs:5120-con:1024-ep:8-gpus:8',
|
|
'config': {
|
|
'enable_attention_dp': True,
|
|
'cuda_graph_batch_sizes': [128]
|
|
}
|
|
},
|
|
# Llama Nemotron models with attention_dp disabled to prevent hangs
|
|
{
|
|
'patterns': [
|
|
'llama_v3.1_nemotron_ultra_253b_fp8-bench-pytorch-float8',
|
|
'llama_v3.3_nemotron_super_49b_fp8-bench-pytorch-float8',
|
|
'llama_v3.3_nemotron_super_49b-bench-pytorch-bfloat16'
|
|
],
|
|
'config': {
|
|
# True causes hang, needs model-specific fix.
|
|
'enable_attention_dp': False,
|
|
}
|
|
},
|
|
]
|
|
|
|
# Apply pattern-based configurations on top of base config
|
|
for pattern_config in pattern_configs:
|
|
patterns = pattern_config['patterns']
|
|
if isinstance(patterns, str):
|
|
patterns = [patterns]
|
|
for pattern in patterns:
|
|
if pattern in model_label.lower():
|
|
base_config.update(pattern_config['config'])
|
|
break # Stop checking other patterns for this config once we find a match
|
|
|
|
# lora-specific change for pytorch
|
|
if 'pytorch' in model_label and 'loras' in model_label:
|
|
lora_config = {
|
|
'lora_config': {
|
|
'lora_dir': lora_dirs if lora_dirs is not None else [],
|
|
'max_lora_rank': 64,
|
|
'lora_target_modules': ['attn_q', 'attn_k', 'attn_v'],
|
|
'trtllm_modules_to_hf_modules': {
|
|
"attn_q": "q_proj",
|
|
"attn_k": "k_proj",
|
|
"attn_v": "v_proj"
|
|
}
|
|
}
|
|
}
|
|
base_config.update(lora_config)
|
|
|
|
return base_config
|