TensorRT-LLMs/benchmarks/python/build.py
石晓伟 59f41c067d
Update TensorRT-LLM (#708)
* Update TensorRT-LLM

* update

* Bump version to 0.7.0
2023-12-20 16:38:28 +08:00

709 lines
29 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import multiprocessing as mp
import os
import time
from collections import OrderedDict
import tensorrt as trt
import torch
from allowed_configs import (get_allowed_models, get_build_config,
get_model_family)
from base_benchmark import get_engine_name, serialize_engine
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.layers import MoeConfig, PositionEmbeddingType
from tensorrt_llm.logger import logger
from tensorrt_llm.models import PretrainedConfig, quantize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
def parse_arguments():
parser = argparse.ArgumentParser(description='Build TensorRT-LLM models.')
parser.add_argument('-m',
'--model',
type=str,
required=True,
choices=get_allowed_models(),
help='Specify model you want to build.')
parser.add_argument(
'--mode',
type=str,
default="plugin",
choices=['ootb', 'plugin', 'ootb-except-mha'],
help=
('Choose mode between ootb/plugin/ootb-except-mha. '
'\"ootb\" means the engines will be built without any plugins, '
'\"plugin\" means the engines will be built with tuned recipe of using plugins.'
'\"ootb-except-mha\" means the engines will be built with only attention plugins.'
))
parser.add_argument(
'--dtype',
type=str,
default='float16',
choices=['float16', 'bfloat16', 'float32'],
help='Choose data type between float16/bfloat16/float32.')
parser.add_argument(
'--quantization',
type=str,
default=None,
choices=[
'fp8', 'fp8_gemm', 'fp8_kv_cache', 'int8_sq_per_tensor',
'int8_sq_per_token_channel', 'int8_weight_only', 'int4_weight_only',
'int4_weight_only_awq', 'int4_weight_only_gptq'
],
help="Optimize the model with specified quantization recipe")
parser.add_argument(
'--log_level',
type=str,
default="error",
choices=['verbose', 'info', 'warning', 'error', 'internal_error'],
help=
'Choose log level between verbose/info/warning/error/internal_error.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='TensorRT engines will be saved to the specified path.')
parser.add_argument(
'--max_beam_width',
type=int,
default=None,
help=
('If this option is specified, it will override the max beam width of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument(
'--max_input_len',
type=int,
default=None,
help=
('If this option is specified, it will override the max input len of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument(
'--max_output_len',
type=int,
default=None,
help=
('If this option is specified, it will override the max output len of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument(
'--max_batch_size',
type=int,
default=None,
help=
('If this option is specified, it will override the max batch size of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument('--force_num_layer_1',
default=False,
action='store_true',
help='Quick sanity check with num_layer=1.')
parser.add_argument('--serial_build',
default=False,
action='store_true',
help="Build engines serially")
parser.add_argument(
'--rank',
type=int,
default=None,
help=
"The rank of the model to be built, only used when --serial_build is specified"
)
parser.add_argument(
'--world_size',
type=int,
default=None,
help=
"The number of gpus to be used for inference, only used when --serial_build is specified"
)
return parser.parse_args()
def get_quant_mode(quantization):
quant_mode = QuantMode(0)
strongly_typed = False
use_smooth_quant = False
per_token = False
per_channel = False
weight_only_precision = 'int8'
if quantization == "fp8":
strongly_typed = True
quant_mode = quant_mode.set_fp8_qdq()
quant_mode = quant_mode.set_fp8_kv_cache()
elif quantization == "fp8_gemm":
strongly_typed = True
quant_mode = quant_mode.set_fp8_qdq()
elif quantization == "fp8_kv_cache":
strongly_typed = True
quant_mode = quant_mode.set_fp8_kv_cache()
elif quantization == "int8_sq_per_tensor":
use_smooth_quant = True
quant_mode = QuantMode.use_smooth_quant(per_token, per_channel)
elif quantization == "int8_sq_per_token_channel":
use_smooth_quant = True
per_token = True
per_channel = True
quant_mode = QuantMode.use_smooth_quant(per_token, per_channel)
elif quantization == "int8_weight_only":
use_smooth_quant = False
weight_only_precision = 'int8'
quant_mode = QuantMode.use_weight_only(False)
elif quantization == "int4_weight_only":
weight_only_precision = 'int4'
quant_mode = QuantMode.use_weight_only(True)
elif quantization == "int4_weight_only_awq":
weight_only_precision = 'int4_awq'
quant_mode = QuantMode.from_description(quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=True,
use_int4_weights=True)
elif quantization == "int4_weight_only_gptq":
weight_only_precision = 'int4_gptq'
quant_mode = QuantMode.from_description(quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=True,
use_int4_weights=True)
elif quantization == None:
pass
else:
raise Exception(f'Unexpected quantization: {quantization}')
return quant_mode, strongly_typed, use_smooth_quant, weight_only_precision
def build_gpt(args):
build_config = get_build_config(args.model)
if args.force_num_layer_1:
build_config['num_layers'] = 1
# More parameters
if args.serial_build and args.rank is not None and args.world_size is not None:
runtime_rank = args.rank
world_size = args.world_size
else:
runtime_rank = tensorrt_llm.mpi_rank()
world_size = tensorrt_llm.mpi_world_size()
if not args.serial_build:
torch.cuda.set_device(runtime_rank)
num_kv_heads = build_config['num_heads'] \
if build_config['num_kv_heads'] is None else build_config['num_kv_heads']
apply_query_key_layer_scaling = False
max_batch_size = build_config['max_batch_size'] \
if args.max_batch_size is None else args.max_batch_size
max_input_len = build_config['max_input_len'] \
if args.max_input_len is None else args.max_input_len
max_output_len = build_config['max_output_len'] \
if args.max_output_len is None else args.max_output_len
max_beam_width = build_config['max_beam_width'] \
if args.max_beam_width is None else args.max_beam_width
quant_mode, strongly_typed, use_smooth_quant, weight_only_precision = get_quant_mode(
args.quantization)
use_weight_only = quant_mode.is_weight_only()
builder = Builder()
builder_config = builder.create_builder_config(
name=args.model,
precision=args.dtype,
timing_cache=None,
tensor_parallel=world_size, # TP only
parallel_build=True,
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
num_kv_heads=num_kv_heads,
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
apply_query_key_layer_scaling=apply_query_key_layer_scaling,
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_output_len=max_output_len,
int8=(quant_mode.has_act_and_weight_quant()
or quant_mode.is_int8_weight_only()),
quant_mode=quant_mode,
use_refit=False,
opt_level=build_config['builder_opt'],
strongly_typed=strongly_typed)
engine_name = get_engine_name(args.model, args.dtype, world_size,
runtime_rank)
kv_dtype = str_dtype_to_trt(args.dtype)
# Initialize Module
family = get_model_family(args.model)
if family == "gpt":
tensorrt_llm_model = tensorrt_llm.models.GPTLMHeadModel(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(world_size=world_size,
tp_size=world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling,
position_embedding_type=PositionEmbeddingType.learned_absolute
if build_config['position_embedding_type'] is None else
PositionEmbeddingType[build_config['position_embedding_type']],
rotary_embedding_percentage=build_config['rotary_pct'],
quant_mode=quant_mode,
bias=build_config['bias'],
moe_config=MoeConfig(build_config["moe_num_experts"],
build_config["moe_top_k"]))
elif family == "opt":
config = {
'architecture': 'OPTForCausalLM',
'dtype': args.dtype,
'vocab_size': build_config['vocab_size'],
'hidden_size': build_config['hidden_size'],
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'hidden_act': build_config['hidden_act'],
'max_position_embeddings': build_config['n_positions'],
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'use_parallel_embedding': False,
'share_embedding_table': False,
'embedding_sharding_dim': 0,
'do_layer_norm_before': build_config['do_layer_norm_before'],
'quantization': {
'use_smooth_quant':
quant_mode.has_act_and_weight_quant(),
'per_channel':
quant_mode.has_per_channel_scaling(),
'per_token':
quant_mode.has_per_token_dynamic_scaling(),
'per_group':
quant_mode.has_per_group_scaling(),
'group_size':
128,
'int8_kv_cache':
quant_mode.has_int8_kv_cache(),
'enable_fp8':
quant_mode.has_fp8_qdq(),
'fp8_kv_cache':
quant_mode.has_fp8_kv_cache(),
'use_weight_only':
quant_mode.is_weight_only(),
'weight_only_precision':
'int8' if quant_mode.is_int8_weight_only() else 'int4',
}
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.OPTForCausalLM(config)
elif family == "llama":
tensorrt_llm_model = tensorrt_llm.models.LLaMAForCausalLM(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
num_kv_heads=num_kv_heads,
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
dtype=kv_dtype,
mlp_hidden_size=build_config['inter_size'],
mapping=tensorrt_llm.Mapping(world_size=world_size,
tp_size=world_size), # TP only
quant_mode=quant_mode,
use_fused_mlp=True,
moe_config=MoeConfig(build_config["moe_num_experts"],
build_config["moe_top_k"]))
elif family == "gptj":
tensorrt_llm_model = tensorrt_llm.models.GPTJForCausalLM(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
rotary_dim=build_config['rotary_dim'],
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(world_size=world_size,
tp_size=world_size), # TP only
quant_mode=quant_mode)
elif family == "gptneox":
tensorrt_llm_model = tensorrt_llm.models.GPTNeoXForCausalLM(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
rotary_dim=build_config['rotary_dim'],
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(world_size=world_size,
tp_size=world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling)
elif family == "chatglm":
tensorrt_llm_model = tensorrt_llm.models.ChatGLMHeadModel(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(world_size=world_size,
tp_size=world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling,
quant_mode=quant_mode,
model_name="chatglm_6b")
elif family == "chatglm2":
tensorrt_llm_model = tensorrt_llm.models.ChatGLMHeadModel(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(world_size=world_size,
tp_size=world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling,
quant_mode=quant_mode,
model_name="chatglm2_6b")
elif family == "chatglm3":
tensorrt_llm_model = tensorrt_llm.models.ChatGLMHeadModel(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(world_size=world_size,
tp_size=world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling,
quant_mode=quant_mode,
model_name="chatglm3_6b")
elif family == "bloom":
config = {
'architecture': 'BloomForCausalLM',
'dtype': args.dtype,
'vocab_size': build_config['vocab_size'],
'hidden_size': build_config['hidden_size'],
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'hidden_act': build_config['hidden_act'],
'max_position_embeddings': build_config['n_positions'],
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'use_parallel_embedding': (args.model == 'bloom_176b'),
'share_embedding_table': False,
'embedding_sharding_dim': 0,
'quantization': {
'use_smooth_quant':
quant_mode.has_act_and_weight_quant(),
'per_channel':
quant_mode.has_per_channel_scaling(),
'per_token':
quant_mode.has_per_token_dynamic_scaling(),
'per_group':
quant_mode.has_per_group_scaling(),
'group_size':
128,
'int8_kv_cache':
quant_mode.has_int8_kv_cache(),
'enable_fp8':
quant_mode.has_fp8_qdq(),
'fp8_kv_cache':
quant_mode.has_fp8_kv_cache(),
'use_weight_only':
quant_mode.is_weight_only(),
'weight_only_precision':
'int8' if quant_mode.is_int8_weight_only() else 'int4',
}
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.BloomForCausalLM(config)
elif family == "falcon":
tensorrt_llm_model = tensorrt_llm.models.FalconForCausalLM(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
num_kv_heads=num_kv_heads,
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
max_position_embeddings=build_config['n_positions'],
dtype=kv_dtype,
bias=build_config['bias'],
quant_mode=quant_mode,
use_alibi=build_config['use_alibi'],
new_decoder_architecture=build_config['new_decoder_architecture'],
parallel_attention=build_config['parallel_attention'],
mapping=tensorrt_llm.Mapping(world_size=world_size,
tp_size=world_size))
else:
raise Exception(f'Unexpected model: {args.model}')
quant_kwargs = {}
if family == "llama" and use_weight_only:
if weight_only_precision == 'int4_awq':
quant_kwargs = {
"group_size": 128,
"zero": False,
"pre_quant_scale": True,
"exclude_modules": [],
}
elif weight_only_precision == 'int4_gptq':
quant_kwargs = {
"group_size": 128,
"zero": True,
"pre_quant_scale": False,
}
if family not in ['opt', 'bloom']:
tensorrt_llm_model = quantize_model(tensorrt_llm_model, quant_mode,
**quant_kwargs)
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
# Plugins
if args.mode == 'plugin':
network.plugin_config.set_gpt_attention_plugin(dtype=args.dtype)
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
network.plugin_config.enable_remove_input_padding()
network.plugin_config.set_lookup_plugin(dtype=args.dtype)
if args.quantization is None or "fp8" not in args.quantization:
network.plugin_config.set_gemm_plugin(dtype=args.dtype)
# Quantization plugins.
if use_smooth_quant:
network.plugin_config.set_smooth_quant_gemm_plugin(dtype=args.dtype)
network.plugin_config.set_layernorm_quantization_plugin(
dtype=args.dtype)
network.plugin_config.set_quantize_tensor_plugin()
network.plugin_config.set_quantize_per_token_plugin()
elif use_weight_only:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=args.dtype)
elif family == "llama" and quant_mode.has_act_and_weight_quant():
# RMS norm plugin for SmoothQuant
network.plugin_config.set_rmsnorm_quantization_plugin(
dtype=args.dtype)
elif args.mode == 'ootb-except-mha':
network.plugin_config.set_gpt_attention_plugin(dtype=args.dtype)
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if world_size > 1:
network.plugin_config.set_nccl_plugin(
dtype=args.dtype,
use_custom_all_reduce=build_config["use_custom_all_reduce"])
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_model.named_parameters())
# Forward
inputs = tensorrt_llm_model.prepare_inputs(max_batch_size,
max_input_len,
max_output_len, True,
max_beam_width)
if family in ['opt', 'bloom']:
tensorrt_llm_model(**inputs)
else:
tensorrt_llm_model(*inputs)
if args.mode == 'plugin':
tensorrt_llm.graph_rewriting.optimize(network)
# Network -> Engine
start = time.time()
engine = builder.build_engine(network, builder_config)
assert engine is not None, f'Failed to build engine for rank {runtime_rank}'
build_time = round(time.time() - start, 2)
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
serialize_path = os.path.join(args.output_dir, engine_name)
serialize_engine(engine, serialize_path)
if runtime_rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder_config.plugin_config = network.plugin_config
builder.save_config(builder_config, config_path)
return engine, build_time
def build_bert(args):
build_config = get_build_config(args.model)
if args.force_num_layer_1:
build_config['num_layers'] = 1
# More parameters
if args.serial_build and args.rank is not None and args.world_size is not None:
runtime_rank = args.rank
world_size = args.world_size
else:
runtime_rank = tensorrt_llm.mpi_rank()
world_size = tensorrt_llm.mpi_world_size()
if not args.serial_build:
torch.cuda.set_device(runtime_rank)
num_kv_heads = build_config['num_heads'] \
if build_config['num_kv_heads'] is None else build_config['num_kv_heads']
max_batch_size = build_config['max_batch_size'] \
if args.max_batch_size is None else args.max_batch_size
max_input_len = build_config['max_input_len'] \
if args.max_input_len is None else args.max_input_len
bs_range = [1, (max_batch_size + 1) // 2, max_batch_size]
inlen_range = [1, (max_input_len + 1) // 2, max_input_len]
builder = Builder()
builder_config = builder.create_builder_config(
name=args.model,
precision=args.dtype,
timing_cache=None,
tensor_parallel=world_size, # TP only
parallel_build=True,
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
num_kv_heads=num_kv_heads,
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
max_batch_size=max_batch_size,
max_input_len=max_input_len,
opt_level=build_config['builder_opt'])
engine_name = get_engine_name(args.model, args.dtype, world_size,
runtime_rank)
# Initialize model
tensorrt_llm_bert = tensorrt_llm.models.BertModel(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
type_vocab_size=build_config['type_vocab_size'],
mapping=tensorrt_llm.Mapping(world_size=world_size, tp_size=world_size))
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
# Plugins
if args.mode == 'plugin':
network.plugin_config.set_bert_attention_plugin(dtype=args.dtype)
network.plugin_config.set_gemm_plugin(dtype=args.dtype)
network.plugin_config.enable_qk_half_accum()
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
elif args.mode == 'ootb-except-mha':
network.plugin_config.set_bert_attention_plugin(dtype=args.dtype)
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if world_size > 1:
network.plugin_config.set_nccl_plugin(
dtype=args.dtype,
use_custom_all_reduce=build_config["use_custom_all_reduce"])
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_bert.named_parameters())
# Forward
input_ids = tensorrt_llm.Tensor(
name='input_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([('batch_size', [bs_range]),
('input_len', [inlen_range])]),
)
input_lengths = tensorrt_llm.Tensor(name='input_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('batch_size', [bs_range])
]))
hidden_states = tensorrt_llm_bert(input_ids=input_ids,
input_lengths=input_lengths)
# Mark outputs
hidden_states_dtype = str_dtype_to_trt(args.dtype)
hidden_states.mark_output('hidden_states', hidden_states_dtype)
# Network -> Engine
start = time.time()
engine = builder.build_engine(network, builder_config)
assert engine is not None, f'Failed to build engine for rank {runtime_rank}'
build_time = round(time.time() - start, 2)
if args.output_dir is not None:
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
serialize_path = os.path.join(args.output_dir, engine_name)
serialize_engine(engine, serialize_path)
if runtime_rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder_config.plugin_config = network.plugin_config
builder.save_config(builder_config, config_path)
return engine, build_time
def main(args):
logger.set_level(args.log_level)
if args.model in get_allowed_models(benchmark_type="gpt"):
build_gpt(args)
elif args.model in get_allowed_models(benchmark_type="bert"):
build_bert(args)
else:
raise Exception(f'Unexpected model: {args.model}')
if __name__ == '__main__':
mp.set_start_method('spawn')
args = parse_arguments()
main(args)