TensorRT-LLMs/examples/baichuan/build.py
石晓伟 59f41c067d
Update TensorRT-LLM (#708)
* Update TensorRT-LLM

* update

* Bump version to 0.7.0
2023-12-20 16:38:28 +08:00

628 lines
24 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import math
import os
import time
from pathlib import Path
import onnx
# isort: off
import torch
import torch.multiprocessing as mp
import tensorrt as trt
# isort: on
from onnx import TensorProto, helper
from transformers import AutoConfig, AutoModelForCausalLM
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.layers.attention import PositionEmbeddingType
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import BaichuanForCausalLM, quantize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
from weight import get_scaling_factors, load_from_hf_baichuan, load_from_binary, parse_bin_config # isort:skip
# 2 routines: get_engine_name, serialize_engine
# are direct copy from gpt example, TODO: put in utils?
def trt_dtype_to_onnx(dtype):
if dtype == trt.float16:
return TensorProto.DataType.FLOAT16
elif dtype == trt.float32:
return TensorProto.DataType.FLOAT
elif dtype == trt.int32:
return TensorProto.DataType.INT32
else:
raise TypeError("%s is not supported" % dtype)
def to_onnx(network, path):
inputs = []
for i in range(network.num_inputs):
network_input = network.get_input(i)
inputs.append(
helper.make_tensor_value_info(
network_input.name, trt_dtype_to_onnx(network_input.dtype),
list(network_input.shape)))
outputs = []
for i in range(network.num_outputs):
network_output = network.get_output(i)
outputs.append(
helper.make_tensor_value_info(
network_output.name, trt_dtype_to_onnx(network_output.dtype),
list(network_output.shape)))
nodes = []
for i in range(network.num_layers):
layer = network.get_layer(i)
layer_inputs = []
for j in range(layer.num_inputs):
ipt = layer.get_input(j)
if ipt is not None:
layer_inputs.append(layer.get_input(j).name)
layer_outputs = [
layer.get_output(j).name for j in range(layer.num_outputs)
]
nodes.append(
helper.make_node(str(layer.type),
name=layer.name,
inputs=layer_inputs,
outputs=layer_outputs,
domain="com.nvidia"))
onnx_model = helper.make_model(helper.make_graph(nodes,
'attention',
inputs,
outputs,
initializer=None),
producer_name='NVIDIA')
onnx.save(onnx_model, path)
def get_engine_name(model, dtype, tp_size, rank):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(engine)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--bin_model_dir', type=str, default=None)
parser.add_argument('--model_version',
type=str,
default='v1_13b',
choices=['v1_7b', 'v1_13b', 'v2_7b', 'v2_13b'])
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument('--logits_dtype',
type=str,
default='float32',
choices=['float16', 'float32'])
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--vocab_size', type=int, default=64000)
parser.add_argument('--n_layer', type=int, default=40)
parser.add_argument('--n_positions', type=int, default=4096)
parser.add_argument('--n_embd', type=int, default=5120)
parser.add_argument('--n_head', type=int, default=40)
parser.add_argument('--inter_size', type=int, default=13696)
parser.add_argument('--hidden_act', type=str, default='silu')
parser.add_argument('--max_batch_size', type=int, default=1)
parser.add_argument('--max_input_len', type=int, default=1024)
parser.add_argument('--max_output_len', type=int, default=1024)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument('--use_gpt_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument(
'--multi_block_mode',
default=False,
action='store_true',
help=
'Split long kv sequence into multiple blocks (applied to generation MHA kernels). \
It is beneifical when batchxnum_heads cannot fully utilize GPU.'
)
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument('--visualize', default=False, action='store_true')
parser.add_argument('--enable_debug_output',
default=False,
action='store_true')
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument(
'--output_dir',
type=str,
default='engine_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
# Arguments related to the quantization of the model.
parser.add_argument(
'--use_smooth_quant',
default=False,
action="store_true",
help=
'Use the SmoothQuant method to quantize activations and weights for the various GEMMs.'
'See --per_channel and --per_token for finer-grained quantization options.'
)
parser.add_argument(
'--per_channel',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--enable_fp8',
default=False,
action='store_true',
help='Use FP8 Linear layer for Attention QKV/Dense and MLP.')
parser.add_argument(
'--fp8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. fp8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--quantized_fp8_model_path',
type=str,
default=None,
help='Path of a quantized model checkpoint in .npz format')
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--use_inflight_batching',
action="store_true",
default=False,
help="Activates inflight batching mode of gptAttentionPlugin.")
parser.add_argument(
'--paged_kv_cache',
action="store_true",
default=False,
help=
'By default we use contiguous KV cache. By setting this flag you enable paged KV cache'
)
parser.add_argument('--tokens_per_block',
type=int,
default=128,
help='Number of tokens per block in paged KV cache')
parser.add_argument(
'--max_num_tokens',
type=int,
default=None,
help='Define the max number of tokens supported by the engine')
parser.add_argument(
'--strongly_typed',
default=False,
action="store_true",
help=
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
)
args = parser.parse_args()
assert not (
args.use_smooth_quant and args.use_weight_only
), "You cannot enable both SmoothQuant and INT8 weight-only together."
if not args.remove_input_padding:
if args.use_gpt_attention_plugin:
logger.warning(
f"It is recommended to specify --remove_input_padding when using GPT attention plugin"
)
if args.use_inflight_batching:
if not args.use_gpt_attention_plugin:
args.use_gpt_attention_plugin = 'float16'
logger.info(
f"Using GPT attention plugin for inflight batching mode. Setting to default '{args.use_gpt_attention_plugin}'"
)
if not args.remove_input_padding:
args.remove_input_padding = True
logger.info(
"Using remove input padding for inflight batching mode.")
if not args.paged_kv_cache:
args.paged_kv_cache = True
logger.info("Using paged KV cache for inflight batching mode.")
if args.max_num_tokens is not None:
assert args.enable_context_fmha
assert (math.log2(args.tokens_per_block).is_integer()
), "tokens_per_block must be power of 2"
if args.enable_context_fmha or args.enable_context_fmha_fp32_acc:
assert (args.tokens_per_block >=
128), "Context fMHA requires >= 128 tokens per block"
if args.use_smooth_quant:
args.quant_mode = QuantMode.use_smooth_quant(args.per_token,
args.per_channel)
elif args.use_weight_only:
args.quant_mode = QuantMode.use_weight_only(
args.weight_only_precision == 'int4')
else:
args.quant_mode = QuantMode(0)
if args.int8_kv_cache:
args.quant_mode = args.quant_mode.set_int8_kv_cache()
elif args.fp8_kv_cache:
args.quant_mode = args.quant_mode.set_fp8_kv_cache()
if args.enable_fp8:
args.quant_mode = args.quant_mode.set_fp8_qdq()
if args.model_dir is not None:
hf_config = AutoConfig.from_pretrained(args.model_dir,
trust_remote_code=True)
# override the inter_size for Baichuan
args.inter_size = hf_config.intermediate_size
args.n_embd = hf_config.hidden_size
args.n_head = hf_config.num_attention_heads
args.n_layer = hf_config.num_hidden_layers
if args.model_version == 'v1_7b' or args.model_version == 'v2_7b':
args.n_positions = hf_config.max_position_embeddings
else:
args.n_positions = hf_config.model_max_length
args.vocab_size = hf_config.vocab_size
args.hidden_act = hf_config.hidden_act
elif args.bin_model_dir is not None:
n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size, _ = parse_bin_config(
Path(args.bin_model_dir) / "config.ini")
args.inter_size = inter_size
args.n_embd = n_embd
args.n_head = n_head
args.n_layer = n_layer
args.n_positions = n_positions
args.vocab_size = vocab_size
args.hidden_act = hidden_act
else:
# default values are based on v1_13b, change them based on model_version
if args.model_version == 'v1_7b':
args.inter_size = 11008
args.n_embd = 4096
args.n_head = 32
args.n_layer = 32
args.n_positions = 4096
args.vocab_size = 64000
args.hidden_act = 'silu'
elif args.model_version == 'v2_7b':
args.inter_size = 11008
args.n_embd = 4096
args.n_head = 32
args.n_layer = 32
args.n_positions = 4096
args.vocab_size = 125696
args.hidden_act = 'silu'
elif args.model_version == 'v2_13b':
args.inter_size = 13696
args.n_embd = 5120
args.n_head = 40
args.n_layer = 40
args.n_positions = 4096
args.vocab_size = 125696
args.hidden_act = 'silu'
return args
def build_rank_engine(builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name, rank, args):
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
dtype = str_dtype_to_trt(args.dtype)
mapping = Mapping(world_size=args.world_size,
rank=rank,
tp_size=args.world_size)
if args.model_version == 'v1_7b' or args.model_version == 'v2_7b':
position_embedding_type = PositionEmbeddingType.rope_gpt_neox
else:
position_embedding_type = PositionEmbeddingType.alibi
# Initialize Module
tensorrt_llm_baichuan = BaichuanForCausalLM(
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=None,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
position_embedding_type=position_embedding_type,
dtype=dtype,
mlp_hidden_size=args.inter_size,
mapping=mapping,
quant_mode=args.quant_mode,
logits_dtype=args.logits_dtype)
quantize_kwargs = {}
if args.use_smooth_quant or args.use_weight_only:
tensorrt_llm_baichuan = quantize_model(tensorrt_llm_baichuan,
args.quant_mode)
elif args.enable_fp8 or args.fp8_kv_cache:
logger.info(f'Loading scaling factors from '
f'{args.quantized_fp8_model_path}')
quant_scales = get_scaling_factors(args.quantized_fp8_model_path,
num_layers=args.n_layer,
quant_mode=args.quant_mode)
quantize_kwargs = {"quant_scales": quant_scales}
tensorrt_llm_baichuan = quantize_model(tensorrt_llm_baichuan,
args.quant_mode, **quantize_kwargs)
if args.model_dir is not None:
logger.info(
f'Loading HF Baichuan {args.model_version} ... from {args.model_dir}'
)
tik = time.time()
hf_baichuan = AutoModelForCausalLM.from_pretrained(
args.model_dir,
device_map={
"model": "cpu",
"lm_head": "cpu"
}, # Load to CPU memory
torch_dtype="auto",
trust_remote_code=True)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'HF Baichuan {args.model_version} loaded. Total time: {t}')
load_from_hf_baichuan(tensorrt_llm_baichuan,
hf_baichuan,
args.model_version,
rank,
args.world_size,
dtype=args.dtype)
del hf_baichuan
elif args.bin_model_dir is not None:
load_from_binary(tensorrt_llm_baichuan,
args.bin_model_dir,
args.model_version,
mapping,
fp16=(args.dtype == 'float16'),
multi_query_mode=False)
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
if not args.enable_fp8:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
else:
logger.info(
"Gemm plugin does not support FP8. Disabled Gemm plugin.")
# Quantization plugins.
if args.use_smooth_quant:
network.plugin_config.set_smooth_quant_gemm_plugin(dtype=args.dtype)
network.plugin_config.set_rmsnorm_quantization_plugin(dtype=args.dtype)
network.plugin_config.set_quantize_tensor_plugin()
network.plugin_config.set_quantize_per_token_plugin()
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.multi_block_mode:
network.plugin_config.enable_mmha_multi_block_mode()
if args.use_weight_only:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype='float16')
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if args.paged_kv_cache:
network.plugin_config.enable_paged_kv_cache(args.tokens_per_block)
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_baichuan.named_parameters())
# Forward
inputs = tensorrt_llm_baichuan.prepare_inputs(args.max_batch_size,
args.max_input_len,
args.max_output_len, True,
args.max_beam_width,
args.max_num_tokens)
tensorrt_llm_baichuan(*inputs)
if args.enable_debug_output:
# mark intermediate nodes' outputs
for k, v in tensorrt_llm_baichuan.named_network_outputs():
v = v.trt_tensor
v.name = k
network.trt_network.mark_output(v)
v.dtype = dtype
if args.visualize:
model_path = os.path.join(args.output_dir, 'test.onnx')
to_onnx(network.trt_network, model_path)
tensorrt_llm.graph_rewriting.optimize(network)
engine = None
# Network -> Engine
engine = builder.build_engine(network, builder_config)
if rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder.save_config(builder_config, config_path)
return engine
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
tensorrt_llm.logger.set_level(args.log_level)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# when doing serializing build, all ranks share one engine
builder = Builder()
cache = None
model_name = 'baichuan'
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
# NOTE(nkorobov): when only int8 kv cache is used together with paged kv cache no int8 tensors are exposed to TRT
int8_trt_flag = args.quant_mode.has_act_or_weight_quant() or (
not args.paged_kv_cache and args.quant_mode.has_int8_kv_cache())
builder_config = builder.create_builder_config(
name=model_name,
precision=args.dtype,
timing_cache=args.timing_cache if cache is None else cache,
tensor_parallel=args.world_size, # TP only
parallel_build=args.parallel_build,
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
max_beam_width=args.max_beam_width,
max_output_len=args.max_output_len,
max_num_tokens=args.max_num_tokens,
int8=int8_trt_flag,
quant_mode=args.quant_mode,
strongly_typed=args.strongly_typed)
engine_name = get_engine_name(model_name, args.dtype, args.world_size,
cur_rank)
engine = build_rank_engine(builder, builder_config, engine_name,
cur_rank, args)
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
if cur_rank == 0:
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
cache = builder_config.trt_builder_config.get_timing_cache()
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
del engine
if rank == 0:
ok = builder.save_timing_cache(
builder_config, os.path.join(args.output_dir, "model.cache"))
assert ok, "Failed to save timing cache."
if __name__ == '__main__':
args = parse_arguments()
logger.set_level(args.log_level)
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
)
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all {args.world_size} engines: {t}')