TensorRT-LLMs/tensorrt_llm/mapping.py
石晓伟 59f41c067d
Update TensorRT-LLM (#708)
* Update TensorRT-LLM

* update

* Bump version to 0.7.0
2023-12-20 16:38:28 +08:00

103 lines
3.0 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
class Mapping(object):
'''
A node with 8 GPUs, tp_size = 4, pp_size = 2
2 tp groups:
- [0, 1, 2, 3]
- [4, 5, 6, 7]
4 pp groups:
- [0, 4]
- [1, 5]
- [2, 6]
- [3, 7]
'''
def __init__(self,
world_size=1,
rank=0,
gpus_per_node=8,
tp_size=1,
pp_size=1):
self.tp_size = tp_size
self.pp_size = pp_size
self.world_size = world_size
self.rank = rank
self.gpus_per_node = gpus_per_node
if pp_size * tp_size != world_size:
raise ValueError("world_size must equal to pp_size * tp_size")
self.pp_groups = []
self.tp_groups = []
# init pp group
for i in range(tp_size):
ranks = range(i, world_size, tp_size)
self.pp_groups.append(list(ranks))
# init tp group
for i in range(pp_size):
ranks = range(i * tp_size, (i + 1) * tp_size)
self.tp_groups.append(list(ranks))
self.pp_rank = self.rank // self.tp_size
self.tp_rank = self.rank % self.tp_size
self.tp_group = self.tp_groups[self.pp_rank]
self.pp_group = self.pp_groups[self.tp_rank]
def has_tp(self):
return self.tp_size > 1
def is_last_pp_rank(self):
return self.pp_rank == self.pp_size - 1
def is_first_pp_rank(self):
return self.pp_rank == 0
def has_pp(self):
return self.pp_size > 1
def prev_pp_rank(self):
p = self.rank - self.tp_size
if p < 0:
p = p + self.world_size
return p
def next_pp_rank(self):
p = self.rank + self.tp_size
if p >= self.world_size:
p = p - self.world_size
return p
def pp_layers(self, num_layers: int) -> List[int]:
layers_per_pipeline_stage = num_layers // self.pp_size
layers_range = range(self.pp_rank * layers_per_pipeline_stage,
(self.pp_rank + 1) * layers_per_pipeline_stage)
return list(layers_range)
def ep_experts(self, num_experts: int) -> List[int]:
experts_per_rank = num_experts // self.tp_size
experts_range = range(self.tp_rank * experts_per_rank,
(self.tp_rank + 1) * experts_per_rank)
return list(experts_range)