mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
104 lines
3.9 KiB
Python
104 lines
3.9 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||
# SPDX-License-Identifier: Apache-2.0
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
import math
|
||
from typing import Optional, Sequence, Union
|
||
|
||
import numpy as np
|
||
|
||
# isort: off
|
||
import torch
|
||
import tensorrt as trt
|
||
# isort: on
|
||
|
||
from ._utils import str_dtype_to_trt, torch_to_numpy, trt_dtype_to_torch
|
||
from .functional import Tensor, constant
|
||
from .logger import logger
|
||
|
||
|
||
class Parameter:
|
||
_DEFAULT_DTYPE = trt.DataType.FLOAT
|
||
|
||
def __init__(self,
|
||
value: Optional[Union[np.ndarray, torch.Tensor]] = None,
|
||
shape: Sequence[int] = None,
|
||
dtype: Union[str, trt.DataType] = None):
|
||
if dtype is None:
|
||
logger.warning(
|
||
f'Parameter dtype is None, using default dtype: {self._DEFAULT_DTYPE}, it is recommended to always specify dtype explicitly'
|
||
)
|
||
dtype = self._DEFAULT_DTYPE if dtype is None else dtype
|
||
if isinstance(dtype, str):
|
||
dtype = str_dtype_to_trt(dtype)
|
||
if value is None:
|
||
assert isinstance(shape, (list, tuple))
|
||
if len(shape) == 2:
|
||
# Xavier initialization see https://paperswithcode.com/method/xavier-initialization
|
||
v_range = math.sqrt(6) / math.sqrt(shape[0] + shape[1])
|
||
else:
|
||
v_range = 0.1
|
||
|
||
if dtype == trt.DataType.INT8:
|
||
upper = math.ceil(128 * v_range)
|
||
value = torch.randint(-upper,
|
||
upper, (shape),
|
||
dtype=trt_dtype_to_torch(dtype),
|
||
device='cuda')
|
||
# value ~ U[int(-128 * v_range), int(128 * v_range)]
|
||
else:
|
||
value = torch.randn(
|
||
(shape), dtype=trt_dtype_to_torch(dtype),
|
||
device='cuda') * 2 - 1
|
||
# value ~ N[-v_range, v_range]
|
||
value = value * v_range
|
||
self._value = self._regularize_value(value)
|
||
|
||
@property
|
||
def value(self) -> Tensor:
|
||
if isinstance(self._value, np.ndarray):
|
||
self._value = constant(self._value)
|
||
|
||
return self._value
|
||
|
||
@property
|
||
def raw_value(self) -> np.ndarray:
|
||
assert isinstance(
|
||
self._value, np.ndarray
|
||
), "Must be np.ndarray. Proper usage: get parameter.raw_value before getting parameter.value"
|
||
return self._value
|
||
|
||
@value.setter
|
||
def value(self, v: Union[np.ndarray, torch.Tensor]):
|
||
v = self._regularize_value(v)
|
||
assert v.shape == self._value.shape, \
|
||
f'The value updated is not the same shape as the original. ' \
|
||
f'Updated: {v.shape}, original: {self._value.shape}'
|
||
if self._value.dtype != v.dtype:
|
||
logger.warning(
|
||
f"Parameter was initialized as {self._value.dtype} but set to {v.dtype}"
|
||
)
|
||
self._value = v
|
||
|
||
def _get_weights(self) -> trt.Weights:
|
||
return self._value.producer.weights if isinstance(self._value,
|
||
Tensor) else None
|
||
|
||
def _regularize_value(self, value):
|
||
if isinstance(value, np.ndarray):
|
||
return value
|
||
elif isinstance(value, torch.Tensor):
|
||
return torch_to_numpy(value)
|
||
raise TypeError(
|
||
f'Expected numpy.ndarray or torch.Tensor, got {type(value)}')
|