mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
255 lines
8.9 KiB
Python
255 lines
8.9 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from functools import partial
|
|
|
|
from ...functional import avg_pool2d, interpolate, silu
|
|
from ...layers import (AvgPool2d, Conv2d, ConvTranspose2d, GroupNorm, Linear,
|
|
Mish)
|
|
from ...module import Module
|
|
|
|
|
|
class Upsample2D(Module):
|
|
|
|
def __init__(self,
|
|
channels: int,
|
|
use_conv=False,
|
|
use_conv_transpose=False,
|
|
out_channels=None,
|
|
dtype=None) -> None:
|
|
super().__init__()
|
|
|
|
self.channels = channels
|
|
self.out_channels = out_channels
|
|
|
|
self.use_conv_transpose = use_conv_transpose
|
|
self.use_conv = use_conv
|
|
if self.use_conv_transpose:
|
|
self.conv = ConvTranspose2d(channels,
|
|
self.out_channels,
|
|
4,
|
|
2,
|
|
1,
|
|
dtype=dtype)
|
|
elif use_conv:
|
|
self.conv = Conv2d(self.channels,
|
|
self.out_channels, (3, 3),
|
|
padding=(1, 1),
|
|
dtype=dtype)
|
|
else:
|
|
self.conv = None
|
|
|
|
def forward(self, hidden_states, output_size=None):
|
|
assert not hidden_states.is_dynamic()
|
|
batch, channels, _, _ = hidden_states.size()
|
|
assert channels == self.channels
|
|
|
|
if self.use_conv_transpose:
|
|
return self.conv(hidden_states)
|
|
|
|
if output_size is None:
|
|
hidden_states = interpolate(hidden_states,
|
|
scale_factor=2.0,
|
|
mode="nearest")
|
|
else:
|
|
hidden_states = interpolate(hidden_states,
|
|
size=output_size,
|
|
mode="nearest")
|
|
|
|
if self.use_conv:
|
|
hidden_states = self.conv(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class Downsample2D(Module):
|
|
|
|
def __init__(self,
|
|
channels,
|
|
use_conv=False,
|
|
out_channels=None,
|
|
padding=1,
|
|
dtype=None) -> None:
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.padding = padding
|
|
stride = (2, 2)
|
|
|
|
if use_conv:
|
|
self.conv = Conv2d(self.channels,
|
|
self.out_channels, (3, 3),
|
|
stride=stride,
|
|
padding=(padding, padding),
|
|
dtype=dtype)
|
|
else:
|
|
assert self.channels == self.out_channels
|
|
self.conv = AvgPool2d(kernel_size=stride, stride=stride)
|
|
|
|
def forward(self, hidden_states):
|
|
assert not hidden_states.is_dynamic()
|
|
batch, channels, _, _ = hidden_states.size()
|
|
assert channels == self.channels
|
|
|
|
#TODO add the missing pad function
|
|
hidden_states = self.conv(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class ResnetBlock2D(Module):
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
in_channels,
|
|
out_channels=None,
|
|
conv_shortcut=False,
|
|
dropout=0.0,
|
|
temb_channels=512,
|
|
groups=32,
|
|
groups_out=None,
|
|
pre_norm=True,
|
|
eps=1e-6,
|
|
non_linearity="swish",
|
|
time_embedding_norm="default",
|
|
kernel=None,
|
|
output_scale_factor=1.0,
|
|
use_in_shortcut=None,
|
|
up=False,
|
|
down=False,
|
|
dtype=None,
|
|
):
|
|
super().__init__()
|
|
self.pre_norm = pre_norm
|
|
self.pre_norm = True
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
self.use_conv_shortcut = conv_shortcut
|
|
self.time_embedding_norm = time_embedding_norm
|
|
self.up = up
|
|
self.down = down
|
|
self.output_scale_factor = output_scale_factor
|
|
|
|
if groups_out is None:
|
|
groups_out = groups
|
|
|
|
self.norm1 = GroupNorm(num_groups=groups,
|
|
num_channels=in_channels,
|
|
eps=eps,
|
|
affine=True,
|
|
dtype=dtype)
|
|
self.conv1 = Conv2d(in_channels,
|
|
out_channels,
|
|
kernel_size=(3, 3),
|
|
stride=(1, 1),
|
|
padding=(1, 1),
|
|
dtype=dtype)
|
|
|
|
if temb_channels is not None:
|
|
self.time_emb_proj = Linear(temb_channels,
|
|
out_channels,
|
|
dtype=dtype)
|
|
else:
|
|
self.time_emb_proj = None
|
|
|
|
self.norm2 = GroupNorm(num_groups=groups_out,
|
|
num_channels=out_channels,
|
|
eps=eps,
|
|
affine=True,
|
|
dtype=dtype)
|
|
self.conv2 = Conv2d(out_channels,
|
|
out_channels,
|
|
kernel_size=(3, 3),
|
|
stride=(1, 1),
|
|
padding=(1, 1),
|
|
dtype=dtype)
|
|
|
|
if non_linearity == "swish":
|
|
self.nonlinearity = lambda x: silu(x)
|
|
elif non_linearity == "mish":
|
|
self.nonlinearity = Mish()
|
|
elif non_linearity == "silu":
|
|
self.nonlinearity = silu
|
|
|
|
self.upsample = self.downsample = None
|
|
#TODO add the fir kernel supporting.
|
|
if self.up:
|
|
if kernel == "sde_vp":
|
|
self.upsample = partial(interpolate,
|
|
scale_factor=2.0,
|
|
mode="nearest")
|
|
else:
|
|
self.upsample = Upsample2D(in_channels,
|
|
use_conv=False,
|
|
dtype=dtype)
|
|
elif self.down:
|
|
|
|
if kernel == "sde_vp":
|
|
self.downsample = partial(avg_pool2d, kernel_size=2, stride=2)
|
|
else:
|
|
self.downsample = Downsample2D(in_channels,
|
|
use_conv=False,
|
|
padding=1,
|
|
name="op",
|
|
dtype=dtype)
|
|
|
|
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
|
|
|
if self.use_in_shortcut:
|
|
self.conv_shortcut = Conv2d(in_channels,
|
|
out_channels,
|
|
kernel_size=(1, 1),
|
|
stride=(1, 1),
|
|
padding=(0, 0),
|
|
dtype=dtype)
|
|
else:
|
|
self.conv_shortcut = None
|
|
|
|
def forward(self, input_tensor, temb):
|
|
hidden_states = input_tensor
|
|
hidden_states = self.norm1(hidden_states)
|
|
hidden_states = self.nonlinearity(hidden_states)
|
|
|
|
if self.upsample is not None:
|
|
input_tensor = self.upsample(input_tensor)
|
|
hidden_states = self.upsample(hidden_states)
|
|
elif self.downsample is not None:
|
|
input_tensor = self.downsample(input_tensor)
|
|
hidden_states = self.downsample(hidden_states)
|
|
|
|
hidden_states = self.conv1(hidden_states)
|
|
if self.time_emb_proj is not None:
|
|
temb = self.time_emb_proj(self.nonlinearity(temb))
|
|
new_shape = list(temb.size())
|
|
new_shape.extend([1, 1]) #[:,:,None,None] ->view
|
|
temb = temb.view(new_shape)
|
|
|
|
assert self.time_embedding_norm == "default"
|
|
if temb is not None:
|
|
hidden_states = hidden_states + temb
|
|
|
|
hidden_states = self.norm2(hidden_states)
|
|
hidden_states = self.nonlinearity(hidden_states)
|
|
hidden_states = self.conv2(hidden_states)
|
|
|
|
if self.conv_shortcut is not None:
|
|
input_tensor = self.conv_shortcut(input_tensor)
|
|
|
|
output_tensor = (input_tensor +
|
|
hidden_states) / self.output_scale_factor
|
|
return output_tensor
|