mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
511 lines
22 KiB
Python
511 lines
22 KiB
Python
import json
|
|
import os
|
|
from dataclasses import dataclass, field
|
|
from pathlib import Path
|
|
from typing import Dict, Generic, List, Optional, TypeVar
|
|
|
|
import torch
|
|
import transformers
|
|
|
|
from tensorrt_llm import logger
|
|
from tensorrt_llm._torch.pyexecutor.config_utils import is_nemotron_hybrid
|
|
from tensorrt_llm._utils import get_sm_version, torch_dtype_to_binding
|
|
from tensorrt_llm.bindings import LayerType as LayerTypeCpp
|
|
from tensorrt_llm.functional import AllReduceStrategy
|
|
from tensorrt_llm.logger import logger
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models.modeling_utils import QuantConfig
|
|
from tensorrt_llm.quantization.mode import QuantAlgo
|
|
|
|
TConfig = TypeVar("TConfig", bound=transformers.PretrainedConfig)
|
|
|
|
|
|
@dataclass
|
|
class MoeLoadBalancerConfig:
|
|
num_slots: Optional[int] = None
|
|
initial_global_assignments: Optional[Dict[int,
|
|
List[int]]] = field(default=None,
|
|
repr=False)
|
|
layer_updates_per_iter: int = 0
|
|
|
|
ep_rank: Optional[int] = field(default=None, init=False)
|
|
ep_size: Optional[int] = field(default=None, init=False)
|
|
|
|
def setup(self, ep_rank: int, ep_size: int) -> None:
|
|
self.ep_rank = ep_rank
|
|
self.ep_size = ep_size
|
|
assert self.num_slots is not None
|
|
|
|
@property
|
|
def num_local_slots(self) -> int:
|
|
return self.num_slots // self.ep_size
|
|
|
|
@property
|
|
def slot_start(self) -> int:
|
|
return self.ep_rank * self.num_local_slots
|
|
|
|
@property
|
|
def slot_end(self) -> int:
|
|
return self.slot_start + self.num_local_slots
|
|
|
|
def get_layer_initial_global_assignments(self, layer_idx: int) -> List[int]:
|
|
if self.initial_global_assignments is not None:
|
|
assert layer_idx in self.initial_global_assignments
|
|
assert len(
|
|
self.initial_global_assignments[layer_idx]) == self.num_slots
|
|
return self.initial_global_assignments[layer_idx]
|
|
else:
|
|
return None
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class ModelConfig(Generic[TConfig]):
|
|
pretrained_config: Optional[TConfig] = None
|
|
mapping: Mapping = field(default_factory=Mapping)
|
|
|
|
# quantization configs
|
|
quant_config: QuantConfig = field(default_factory=QuantConfig)
|
|
# TODO(qijun): support per linear layer quantization
|
|
quant_config_dict: Optional[Dict[str, QuantConfig]] = None
|
|
# Delay weights creation to DecoderModelForCausalLM.__post_init__
|
|
# to support mixed quantization.
|
|
skip_create_weights_in_init: bool = False
|
|
|
|
spec_config: Optional["DecodingBaseConfig"] = None
|
|
lora_config: Optional["LoraConfig"] = None
|
|
|
|
is_generation: bool = True
|
|
max_num_tokens: int = 8192
|
|
max_seq_len: Optional[int] = None
|
|
|
|
moe_max_num_tokens: Optional[int] = None
|
|
moe_load_balancer: Optional[MoeLoadBalancerConfig] = None
|
|
|
|
attn_backend: str = 'TRTLLM'
|
|
moe_backend: str = 'CUTLASS' # options can be CUTLASS, TRTLLM
|
|
allreduce_strategy: AllReduceStrategy = AllReduceStrategy.AUTO
|
|
|
|
# If true, enable min-latency mode. Currently only used for Llama4.
|
|
enable_min_latency: bool = False
|
|
|
|
# Allow models to select op according to whether CUDA Graphs are used.
|
|
use_cuda_graph: bool = False
|
|
|
|
force_dynamic_quantization: bool = False
|
|
|
|
# If true, use torch.compile for embedding layers.
|
|
enable_torch_compile_for_embedding = False
|
|
|
|
extra_attrs: Dict = field(default_factory=dict, repr=False, init=False)
|
|
|
|
_frozen: bool = field(default=False, init=False, repr=False)
|
|
|
|
def __setattr__(self, key, value):
|
|
"""
|
|
Prevent modification of frozen instance attributes.
|
|
However, we allow modification of 'extra_attrs' attributes for torch.compile
|
|
and 'pretrained_config' attributes for mutimodal models. All the other
|
|
attributes are frozen.
|
|
This can be bypassed by manually setting '_frozen' to False. The design is
|
|
to discourage modifying the attributes unintentionally.
|
|
"""
|
|
if self._frozen:
|
|
if key not in ('_frozen', 'extra_attrs', 'pretrained_config'):
|
|
raise AttributeError(
|
|
f"Cannot modify ModelConfig.'{key}' - instance is frozen")
|
|
super().__setattr__(key, value)
|
|
|
|
def __post_init__(self):
|
|
if self.pretrained_config and hasattr(self.pretrained_config,
|
|
"architectures"):
|
|
self.is_generation = self.is_generation_model(
|
|
self.pretrained_config.architectures)
|
|
|
|
def get_all_reduce_strategy(strategy: str = "AUTO"):
|
|
maps = {
|
|
"AUTO": AllReduceStrategy.AUTO,
|
|
"NCCL": AllReduceStrategy.NCCL,
|
|
"UB": AllReduceStrategy.UB,
|
|
"MINLATENCY": AllReduceStrategy.MIN_LATENCY,
|
|
"ONESHOT": AllReduceStrategy.ONESHOT,
|
|
"TWOSHOT": AllReduceStrategy.TWOSHOT,
|
|
"LOWPRECISION": AllReduceStrategy.LOWPRECISION,
|
|
"MNNVL": AllReduceStrategy.MNNVL,
|
|
"NCCL_SYMMETRIC": AllReduceStrategy.NCCL_SYMMETRIC
|
|
}
|
|
key = strategy.upper()
|
|
return maps[key] if key in maps else AllReduceStrategy.AUTO
|
|
|
|
if isinstance(self.allreduce_strategy, str):
|
|
self.allreduce_strategy = get_all_reduce_strategy(
|
|
self.allreduce_strategy)
|
|
|
|
@property
|
|
def fuse_pos_embd(self):
|
|
if self.attn_backend == 'TRTLLM':
|
|
return True
|
|
elif self.attn_backend == 'FLASHINFER':
|
|
return False
|
|
return False
|
|
|
|
@property
|
|
def enable_flash_mla(self):
|
|
if self.attn_backend == 'TRTLLM':
|
|
if hasattr(self.pretrained_config, "kv_lora_rank") and hasattr(
|
|
self.pretrained_config, "qk_rope_head_dim"):
|
|
head_dim = self.pretrained_config.kv_lora_rank + self.pretrained_config.qk_rope_head_dim
|
|
if head_dim == 576 and torch.cuda.get_device_capability() == (
|
|
9, 0):
|
|
return True
|
|
return False
|
|
|
|
def get_quant_config(self, name: Optional[str] = None) -> QuantConfig:
|
|
if name is None or self.per_layer_quant_configs is None:
|
|
return self.quant_config
|
|
|
|
if name in self.per_layer_quant_configs:
|
|
return self.per_layer_quant_configs[name]
|
|
|
|
raise ValueError(f'quant config of {name} is not found')
|
|
|
|
@staticmethod
|
|
def is_generation_model(model_architectures: Optional[List[str]]) -> bool:
|
|
if model_architectures is None:
|
|
logger.warning(
|
|
"Model architectures is None, default to is_generation_model=True"
|
|
)
|
|
return True
|
|
return model_architectures[0] not in [
|
|
"BertForSequenceClassification", "Qwen2ForProcessRewardModel",
|
|
"Qwen2ForRewardModel", "LlamaForTextEmbedding"
|
|
]
|
|
# TODO: should be 'not model_type == ModelType.ENCODER_ONLY'
|
|
# once ModelType is used in pytorch flow.
|
|
|
|
@staticmethod
|
|
def load_modelopt_quant_config(quant_config_file, model_dir, moe_backend):
|
|
quant_config = QuantConfig()
|
|
layer_quant_config = None
|
|
|
|
with open(quant_config_file) as f:
|
|
quant_config_dict = json.load(f)
|
|
|
|
json_quant_configs = quant_config_dict['quantization']
|
|
|
|
quant_config.quant_algo = json_quant_configs.get('quant_algo', None)
|
|
# fp8_pb_wo from modelopt is the same as FP8_BLOCK_SCALES
|
|
if quant_config.quant_algo == "fp8_pb_wo":
|
|
quant_config.quant_algo = 'FP8_BLOCK_SCALES'
|
|
quant_config.kv_cache_quant_algo = json_quant_configs.get(
|
|
'kv_cache_quant_algo', None)
|
|
quant_config.group_size = json_quant_configs.get('group_size', None)
|
|
quant_config.exclude_modules = json_quant_configs.get(
|
|
'exclude_modules', None)
|
|
|
|
if quant_config.quant_algo == QuantAlgo.MIXED_PRECISION:
|
|
mixed_quant_config_file = model_dir / 'quant_cfg.json'
|
|
with open(mixed_quant_config_file) as fm:
|
|
mixed_quant_configs = json.load(fm)
|
|
# kv_cache_quant_algo is global regardless of MIXED_PRECISION
|
|
kv_cache_quant_algo = mixed_quant_configs['kv_cache_quant_algo']
|
|
mixed_quant_configs = mixed_quant_configs['quantized_layers']
|
|
if kv_cache_quant_algo is not None and quant_config.kv_cache_quant_algo is not None:
|
|
if kv_cache_quant_algo != quant_config.kv_cache_quant_algo:
|
|
raise RuntimeError(
|
|
f"The kvcache config in 'quant_cfg.json', {kv_cache_quant_algo},"
|
|
f"is different from 'hf_quant_config.json', {quant_config.kv_cache_quant_algo}!"
|
|
)
|
|
kv_cache_quant_algo = kv_cache_quant_algo or quant_config.kv_cache_quant_algo
|
|
|
|
for layer in mixed_quant_configs:
|
|
config = QuantConfig()
|
|
config.kv_cache_quant_algo = kv_cache_quant_algo
|
|
config.quant_algo = mixed_quant_configs[layer]['quant_algo']
|
|
config.group_size = mixed_quant_configs[layer].get(
|
|
'group_size', None)
|
|
mixed_quant_configs[layer] = config
|
|
layer_quant_config = mixed_quant_configs
|
|
elif quant_config.quant_algo == QuantAlgo.FP8_BLOCK_SCALES:
|
|
if quant_config.group_size is None:
|
|
quant_config.group_size = 128
|
|
|
|
if moe_backend == 'TRTLLM' and quant_config.quant_algo == "FP8_BLOCK_SCALES" and quant_config.exclude_modules is None:
|
|
quant_config.exclude_modules = [
|
|
"*kv_b_proj*", "*k_b_proj*", "*eh_proj"
|
|
]
|
|
return quant_config, layer_quant_config
|
|
|
|
@staticmethod
|
|
def get_mxfp4_quant_algo(moe_backend, is_dynamic_quant=False):
|
|
quant_algo = ModelConfig.override_quant_algo()
|
|
if quant_algo is None and not is_dynamic_quant:
|
|
if get_sm_version() >= 100:
|
|
if moe_backend == 'TRITON':
|
|
return QuantAlgo.W4A8_MXFP4_FP8
|
|
else:
|
|
return QuantAlgo.W4A8_MXFP4_MXFP8
|
|
else:
|
|
return QuantAlgo.W4A16_MXFP4
|
|
else:
|
|
return quant_algo
|
|
|
|
@staticmethod
|
|
def load_hf_quant_config(hf_quant_config, moe_backend):
|
|
quant_config = QuantConfig()
|
|
layer_quant_config = None
|
|
|
|
# DeepSeek V3 FP8 ckpt
|
|
if hf_quant_config.get("quant_method") == "fp8" and hf_quant_config.get(
|
|
"weight_block_size", []):
|
|
quant_config.quant_algo = QuantAlgo.FP8_BLOCK_SCALES
|
|
if moe_backend == 'TRTLLM':
|
|
# TODO: This is a hack. Remove after fp8 bmm is integrated.
|
|
quant_config.exclude_modules = [
|
|
"*kv_b_proj*", "*k_b_proj*", "*eh_proj"
|
|
]
|
|
else:
|
|
quant_config.exclude_modules = ["*eh_proj"]
|
|
|
|
block_size = hf_quant_config.get("weight_block_size", [])
|
|
assert tuple(block_size) == (
|
|
128, 128), "FP8_BLOCK_SCALES only supports block_size=(128,128)"
|
|
quant_config.group_size = block_size[0]
|
|
# MXFP4 checkpoints.
|
|
elif hf_quant_config.get("quant_method") == "mxfp4":
|
|
quant_config.quant_algo = ModelConfig.get_mxfp4_quant_algo(
|
|
moe_backend)
|
|
quant_config.group_size = 32
|
|
quant_config.exclude_modules = [
|
|
'block.*.attn.out', 'block.*.mlp.gate', 'block.*.attn.qkv',
|
|
'embedding', 'unembedding'
|
|
]
|
|
|
|
return quant_config, layer_quant_config
|
|
|
|
@staticmethod
|
|
def load_quant_config_from_dtypes_json(dtypes_json_file, moe_backend: str):
|
|
quant_config = QuantConfig()
|
|
layer_quant_config = None
|
|
|
|
exclude_modules = set()
|
|
has_mxfp4 = False
|
|
is_dynamic_quant = False
|
|
with open(dtypes_json_file) as f:
|
|
dtypes_json = json.load(f)
|
|
for layer, dtype in dtypes_json.items():
|
|
if layer.endswith("weight"):
|
|
if dtype == "BF16" or dtype == "FP16":
|
|
names = layer.split(".")
|
|
exclude_modules.add('.'.join(names[:-1]))
|
|
elif dtype == "MXFP4":
|
|
# This is the path for the fp8 checkpoint which requires dynamic quantization.
|
|
is_dynamic_quant = True
|
|
has_mxfp4 = True
|
|
elif layer.endswith("weight.blocks"):
|
|
scale_name = layer.replace("weight.blocks", "weight.scales")
|
|
scale_dtype = dtypes_json.get(scale_name, None)
|
|
assert scale_dtype == "UE8"
|
|
is_dynamic_quant = False
|
|
has_mxfp4 = True
|
|
|
|
if has_mxfp4:
|
|
quant_config.quant_algo = ModelConfig.get_mxfp4_quant_algo(
|
|
moe_backend, is_dynamic_quant)
|
|
quant_config.group_size = 32
|
|
quant_config.exclude_modules = list(exclude_modules)
|
|
logger.info(f"Setting quant_config: {quant_config}")
|
|
|
|
return quant_config, layer_quant_config
|
|
|
|
@staticmethod
|
|
def override_quant_algo():
|
|
new_algo = os.environ.get("OVERRIDE_QUANT_ALGO", None)
|
|
supported_algos = {
|
|
"W4A16_MXFP4": QuantAlgo.W4A16_MXFP4,
|
|
"W4A8_MXFP4_MXFP8": QuantAlgo.W4A8_MXFP4_MXFP8,
|
|
"W4A8_MXFP4_FP8": QuantAlgo.W4A8_MXFP4_FP8,
|
|
}
|
|
if new_algo is not None:
|
|
if new_algo.upper() in supported_algos:
|
|
return supported_algos[new_algo.upper()]
|
|
else:
|
|
logger.warning(
|
|
f"Unsupported quant algo: {new_algo}, supported algos: {supported_algos.keys()}"
|
|
)
|
|
return None
|
|
|
|
@classmethod
|
|
def from_pretrained(cls,
|
|
checkpoint_dir: str,
|
|
trust_remote_code=False,
|
|
**kwargs):
|
|
pretrained_config = transformers.AutoConfig.from_pretrained(
|
|
checkpoint_dir,
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
|
|
# Find the cache path by looking for the config.json file which should be in all
|
|
# huggingface models
|
|
model_dir = Path(
|
|
transformers.utils.hub.cached_file(checkpoint_dir,
|
|
'config.json')).parent
|
|
quant_config = QuantConfig()
|
|
layer_quant_config = None
|
|
moe_backend = kwargs.get('moe_backend', 'CUTLASS')
|
|
|
|
# quantized ckpt in modelopt format
|
|
if (quant_config_file := model_dir / 'hf_quant_config.json').exists():
|
|
quant_config, layer_quant_config = cls.load_modelopt_quant_config(
|
|
quant_config_file, model_dir, moe_backend)
|
|
# quantized ckpt in other formats
|
|
elif hasattr(pretrained_config, "quantization_config"):
|
|
hf_quant_config = pretrained_config.quantization_config
|
|
quant_config, layer_quant_config = cls.load_hf_quant_config(
|
|
hf_quant_config, moe_backend)
|
|
elif (quant_config_file := model_dir / 'dtypes.json').exists():
|
|
quant_config, layer_quant_config = cls.load_quant_config_from_dtypes_json(
|
|
quant_config_file, moe_backend)
|
|
|
|
model_config = cls(pretrained_config=pretrained_config,
|
|
quant_config=quant_config,
|
|
quant_config_dict=layer_quant_config,
|
|
**kwargs)
|
|
model_config._frozen = True
|
|
return model_config
|
|
|
|
def get_bindings_model_config(self,
|
|
tokens_per_block: Optional[int] = None
|
|
) -> "ModelConfigCpp":
|
|
"""
|
|
This method is used to construct the bindings config for the model.
|
|
Currently it adheres to gptJsonConfig.cpp::createModelConfig, which assumes
|
|
that an engine has been created.
|
|
|
|
Args:
|
|
tokens_per_block: The number of tokens per block. Please note that in PyTorch flow tokens_per_block is not available in the model config, instead it is defined in the executor config.
|
|
|
|
Returns:
|
|
The bindings model config.
|
|
"""
|
|
# TODO smor- this isn't robust, and currently tested for LlamaConfig only
|
|
# TODO smor- currently assuming no rnn layers, no MOE
|
|
from tensorrt_llm.bindings import ModelConfig as ModelConfigCpp
|
|
|
|
num_heads = self.pretrained_config.num_attention_heads // (
|
|
self.mapping.tp_size * self.mapping.cp_size)
|
|
|
|
hidden_size = self.pretrained_config.hidden_size // self.mapping.tp_size
|
|
|
|
model_config_cpp = ModelConfigCpp(
|
|
vocab_size=self.pretrained_config.vocab_size,
|
|
num_layers=self.pretrained_config.num_hidden_layers,
|
|
num_attention_layers=self.get_num_attention_layers(),
|
|
num_rnn_layers=0,
|
|
num_heads=num_heads,
|
|
hidden_size=hidden_size,
|
|
data_type=torch_dtype_to_binding(
|
|
self.pretrained_config.torch_dtype))
|
|
|
|
# For kv cache size calculation: set tokens_per_block
|
|
if tokens_per_block is None:
|
|
logger.warning(
|
|
f"tokens_per_block is not set, using default value {model_config_cpp.tokens_per_block}"
|
|
)
|
|
else:
|
|
model_config_cpp.tokens_per_block = tokens_per_block
|
|
|
|
num_key_value_heads = getattr(self.pretrained_config,
|
|
"num_key_value_heads", num_heads)
|
|
if isinstance(num_key_value_heads, (list, tuple)):
|
|
# Per-layer KV heads (e.g., Nemotron-NAS, variable GQA models)
|
|
num_kv_heads_per_layer = [
|
|
kv_heads // (self.mapping.tp_size * self.mapping.cp_size)
|
|
for kv_heads in num_key_value_heads
|
|
]
|
|
model_config_cpp.num_kv_heads_per_layer = num_kv_heads_per_layer
|
|
else:
|
|
num_kv_heads = num_key_value_heads // (self.mapping.tp_size *
|
|
self.mapping.cp_size)
|
|
model_config_cpp.set_num_kv_heads(num_kv_heads)
|
|
|
|
mlp_hidden_size = None
|
|
if self.pretrained_config.intermediate_size is not None:
|
|
mlp_hidden_size = self.pretrained_config.intermediate_size // self.mapping.tp_size
|
|
else:
|
|
# TODO: once tensorrt_llm._torch.AutoConfig is implemented, the following logic
|
|
# should be moved to tensorrt_llm._torch.AutoConfig of the relevant modeling_xxx file
|
|
if hasattr(self.pretrained_config, "architectures"
|
|
) and self.pretrained_config.architectures is not None:
|
|
architectures = self.pretrained_config.architectures
|
|
if len(architectures
|
|
) == 1 and architectures[0] == "DeciLMForCausalLM":
|
|
mlp_hidden_size = self._infer_nemotron_ffn_mult()
|
|
else:
|
|
raise ValueError(
|
|
f"Inferring mlp hidden size for model architecture: {architectures} isn't supported yet"
|
|
)
|
|
if mlp_hidden_size is None:
|
|
raise ValueError(
|
|
f"Failed to infer mlp hidden size for model: {self.pretrained_config.model_type}"
|
|
)
|
|
|
|
# For kv cache size calculation: set size_per_head
|
|
head_dim_names = ["head_size", "head_dim"]
|
|
for head_dim_name in head_dim_names:
|
|
if head_dim_name in self.pretrained_config:
|
|
head_size = getattr(self.pretrained_config, head_dim_name)
|
|
break
|
|
else:
|
|
logger.warning(
|
|
f"head_size/head_dim is not set, using default value {hidden_size // num_heads}"
|
|
)
|
|
head_size = hidden_size // num_heads
|
|
|
|
model_config_cpp.mlp_hidden_size = mlp_hidden_size
|
|
model_config_cpp.size_per_head = head_size
|
|
|
|
# NOTE: this method is not robust, for Gemma3ForCausalLM only
|
|
layer_types = self.get_layer_types()
|
|
if layer_types is not None:
|
|
model_config_cpp.layer_types = layer_types
|
|
|
|
return model_config_cpp
|
|
|
|
def _infer_nemotron_ffn_mult(self):
|
|
# TODO smor: this is a hack to support Nemotron-Super-49B-v1 with LoRA, tracked by TRTLLM-5045 ticket
|
|
# Nemotron-NAS has variable ffn_mult for each layer, we need to find the maximum
|
|
# so that we don't set a too small mlp_hidden_size. This solution leads to a memory
|
|
# consumption that is higher than required.
|
|
biggest_ffn_mult = max([
|
|
(x.ffn.ffn_mult if x.ffn.ffn_mult is not None else 0)
|
|
for x in self.pretrained_config.block_configs
|
|
])
|
|
|
|
from tensorrt_llm._torch.models.modeling_nemotron_nas import \
|
|
_ffn_mult_to_intermediate_size
|
|
mlp_hidden_size = _ffn_mult_to_intermediate_size(
|
|
biggest_ffn_mult, self.pretrained_config.hidden_size)
|
|
|
|
return mlp_hidden_size
|
|
|
|
def get_layer_types(self) -> Optional[List[LayerTypeCpp]]:
|
|
"""
|
|
This method is a hack to support the effort to switch to KvCacheManagerCpp.
|
|
Currently, it is only tested for Gemma3ForCausalLM. For other models, it will return None.
|
|
"""
|
|
if self.pretrained_config.architectures[0] in ["Gemma3ForCausalLM"]:
|
|
logger.debug(
|
|
f"Setting layer types for {self.pretrained_config.architectures}"
|
|
)
|
|
return [
|
|
LayerTypeCpp.ATTENTION,
|
|
] * self.pretrained_config.num_hidden_layers
|
|
else:
|
|
return None
|
|
|
|
def get_num_attention_layers(self):
|
|
if is_nemotron_hybrid(self.pretrained_config):
|
|
return self.pretrained_config.hybrid_override_pattern.count("*")
|
|
else:
|
|
return self.pretrained_config.num_hidden_layers
|