TensorRT-LLMs/tests/integration/defs/examples/test_granite.py
xinhe-nv 0cebc16139
test: [CI] Add failed cases into waives.txt (#4205)
waive tests

Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com>
2025-05-13 10:22:42 +08:00

137 lines
4.5 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
from defs.common import (convert_weights, test_multi_lora_support,
venv_mpi_check_call)
from defs.trt_test_alternative import check_call
@pytest.fixture(scope="module", autouse=True)
def disable_unified_converter():
os.environ['TRTLLM_DISABLE_UNIFIED_CONVERTER'] = '1'
yield
del os.environ['TRTLLM_DISABLE_UNIFIED_CONVERTER']
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
@pytest.mark.parametrize(
"llm_granite_model_root",
["granite-3.0-1b-a400m-instruct", "granite-3.0-2b-instruct"],
indirect=True)
def test_llm_granite(llama_example_root, llm_granite_model_root,
llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir,
engine_dir, dtype):
print("Converting checkpoint...")
model_name = os.path.basename(llm_granite_model_root)
ckpt_dir = convert_weights(
llm_venv=llm_venv,
example_root=llama_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_granite_model_root,
data_type=dtype,
)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
"--max_batch_size=8",
"--max_input_len=924",
"--max_seq_len=1024",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
f"--moe_plugin={dtype}",
f"--workers=1",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run engines...")
summary_cmd = [
f"{llama_example_root}/../../../summarize.py",
f"--engine_dir={engine_dir}",
f"--hf_model_dir={llm_granite_model_root}",
f"--dataset_dir={llm_datasets_root}",
f"--rouge_dir={llm_rouge_root}"
"--test_trt_llm",
"--check_accuracy",
"--tensorrt_llm_rouge1_threshold=25",
"--batch_size=8",
"--max_ite=40",
]
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "1", "--allow-run-as-root"],
summary_cmd)
@pytest.mark.parametrize(
"llm_granite_model_root",
["granite-3.0-1b-a400m-instruct", "granite-3.0-2b-instruct"],
indirect=True)
def test_granite_bf16_lora(llama_example_root,
llm_datasets_root,
qcache_dir,
llm_rouge_root,
llm_venv,
engine_dir,
cmodel_dir,
llm_granite_model_root,
num_beams=1):
"Run Granite 3.0 models with multiple dummy LoRAs."
# TODO: Enable fp8 quantization when ModelOpt changes for Granite are available.
print("Converting checkpoint...")
model_name = os.path.basename(llm_granite_model_root)
dtype = 'bfloat16'
ckpt_dir = convert_weights(
llm_venv=llm_venv,
example_root=llama_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_granite_model_root,
data_type=dtype,
)
target_hf_modules = [
"q_proj",
"k_proj",
"v_proj",
]
target_trtllm_modules = [
"attn_q",
"attn_k",
"attn_v",
]
if model_name == "granite-3.0-1b-a400m-instruct":
target_hf_modules += ["moe_h_to_4h", "moe_4h_to_h", "moe_gate"]
target_trtllm_modules += ["moe_h_to_4h", "moe_4h_to_h", "moe_gate"]
test_multi_lora_support(
hf_model_dir=llm_granite_model_root,
tllm_ckpt_dir=ckpt_dir,
engine_dir=engine_dir,
llm_venv=llm_venv,
example_root=llama_example_root,
num_loras=2,
lora_rank=8,
target_hf_modules=target_hf_modules,
target_trtllm_modules=target_trtllm_modules,
zero_lora_weights=True,
)