mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> Co-authored-by: wili-65535 <wili-65535@users.noreply.github.com>
158 lines
6.2 KiB
Python
158 lines
6.2 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import csv
|
|
from copy import deepcopy
|
|
|
|
import pytest
|
|
from defs.common import convert_weights, venv_check_call
|
|
from defs.conftest import skip_post_blackwell
|
|
from defs.trt_test_alternative import check_call
|
|
|
|
|
|
# TODO: remove skip after support NGram on B200
|
|
@skip_post_blackwell
|
|
@pytest.mark.parametrize("batch_size", [1, 2], ids=['bs1', 'bs2'])
|
|
@pytest.mark.parametrize("data_type", ['float16'])
|
|
@pytest.mark.parametrize("max_draft_len", [4, 8],
|
|
ids=['max_draft_len_4', 'max_draft_len_8'])
|
|
@pytest.mark.parametrize(
|
|
"max_matching_ngram_size", [2, 4],
|
|
ids=['max_matching_ngram_size_2', 'max_matching_ngram_size_4'])
|
|
@pytest.mark.parametrize("use_logits", [False, True],
|
|
ids=['use_tokens', 'use_logits']) # useless yet
|
|
@pytest.mark.parametrize("use_py_session", [False], ids=["use_cpp_session"])
|
|
@pytest.mark.parametrize("ngram_root", ["gpt2"], indirect=True)
|
|
@pytest.mark.parametrize("streaming", [False, True],
|
|
ids=["no_streaming", "streaming"])
|
|
def test_llm_ngram_1gpu(batch_size, data_type, max_draft_len,
|
|
max_matching_ngram_size, use_logits, use_py_session,
|
|
ngram_root, streaming, ngram_example_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir,
|
|
engine_dir):
|
|
model_name = "ngram"
|
|
|
|
print("Build checkpoint ...")
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=ngram_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=ngram_root,
|
|
data_type=data_type)
|
|
|
|
print("Build engines ...")
|
|
target_engine_dir = engine_dir + "-target"
|
|
baseline_engine_dir = engine_dir + "-baseline"
|
|
common_build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--max_batch_size={batch_size}",
|
|
f"--max_beam_width=1",
|
|
"--max_input_len=1024",
|
|
"--max_seq_len=1536",
|
|
"--use_paged_context_fmha=enable",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
]
|
|
target_model_build_cmd = deepcopy(common_build_cmd)
|
|
target_model_build_cmd.extend([
|
|
f"--output_dir={target_engine_dir}",
|
|
"--speculative_decoding_mode=draft_tokens_external",
|
|
f"--max_draft_len={max_draft_len+1}",
|
|
])
|
|
baseline_model_build_cmd = deepcopy(common_build_cmd)
|
|
baseline_model_build_cmd.extend([
|
|
f"--output_dir={baseline_engine_dir}",
|
|
])
|
|
|
|
check_call(" ".join(target_model_build_cmd),
|
|
shell=True,
|
|
env=llm_venv._new_env)
|
|
check_call(" ".join(baseline_model_build_cmd),
|
|
shell=True,
|
|
env=llm_venv._new_env)
|
|
|
|
print("Run inferences ...")
|
|
common_run_cmd = [
|
|
f"{ngram_example_root}/../run.py",
|
|
f"--tokenizer_dir={ngram_root}",
|
|
f"--max_output_len=64",
|
|
f"--kv_cache_enable_block_reuse",
|
|
f"--kv_cache_free_gpu_memory_fraction=0.25",
|
|
]
|
|
if streaming:
|
|
common_run_cmd.extend(["--streaming", "--streaming_interval=1"])
|
|
if batch_size == 1:
|
|
common_run_cmd.extend(["--input_text", "'How are you?'"])
|
|
elif batch_size == 2:
|
|
common_run_cmd.extend(["--input_text", "'Hello'", "'How are you?'"])
|
|
else:
|
|
assert False, "Only batch_size <=2 is supported in test."
|
|
assert not use_py_session, "Only CPP session is supported in Draft-Target-Model."
|
|
|
|
run_cmd = deepcopy(common_run_cmd)
|
|
ngram_config = f"[{max_draft_len},{max_matching_ngram_size},[0]]"
|
|
run_cmd.extend([
|
|
f"--engine_dir={target_engine_dir}",
|
|
f"--ngram_config={ngram_config}",
|
|
f"--output_csv={engine_dir}/ngram_output.csv",
|
|
])
|
|
baseline_run_cmd = deepcopy(common_run_cmd)
|
|
baseline_run_cmd.extend([
|
|
f"--engine_dir={baseline_engine_dir}",
|
|
f"--output_csv={engine_dir}/baseline_output.csv",
|
|
])
|
|
|
|
venv_check_call(llm_venv, run_cmd)
|
|
venv_check_call(llm_venv, baseline_run_cmd)
|
|
|
|
print("Compare outputs ...")
|
|
with open(f"{engine_dir}/ngram_output.csv") as dt_f, open(
|
|
f"{engine_dir}/baseline_output.csv") as b_f:
|
|
for bs, (dt_request,
|
|
b_request) in enumerate(zip(csv.reader(dt_f),
|
|
csv.reader(b_f))):
|
|
assert (
|
|
len(dt_request) == len(b_request)
|
|
), f"Output length at ({bs=}) is different ({len(dt_request)} v.s. {len(b_request)})."
|
|
for index, (dt, b) in enumerate(zip(dt_request, b_request)):
|
|
assert (
|
|
int(dt) == int(b)
|
|
), f"Output at ({bs=}, {index=}) is different ({dt} v.s. {b})."
|
|
|
|
if batch_size > 1 or streaming: # Summarize tests for only batch_size=1 and streaming=False.
|
|
return
|
|
|
|
print("Run summarize...")
|
|
ngram_config = f"[{max_draft_len},{max_matching_ngram_size},[0]]"
|
|
|
|
run_cmd = [
|
|
f"{ngram_example_root}/../summarize.py",
|
|
"--test_hf",
|
|
"--test_trt_llm",
|
|
"--check_accuracy",
|
|
"--batch_size=1",
|
|
f"--hf_model_dir={ngram_root}",
|
|
f"--engine_dir={target_engine_dir}",
|
|
f"--dataset_dir={llm_datasets_root}",
|
|
f"--rouge_dir={llm_rouge_root}",
|
|
"--kv_cache_enable_block_reuse",
|
|
f"--ngram_config={ngram_config}",
|
|
"--tensorrt_llm_rouge1_threshold=20",
|
|
f"--kv_cache_free_gpu_memory_fraction=0.25",
|
|
]
|
|
|
|
venv_check_call(llm_venv, run_cmd)
|