TensorRT-LLMs/tests/integration/defs/examples/test_ngram.py
wili 82d3587bb8
[refactor] Unify name of NGram speculative decoding (#5937)
Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com>
Co-authored-by: wili-65535 <wili-65535@users.noreply.github.com>
2025-07-19 12:59:57 +08:00

158 lines
6.2 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
from copy import deepcopy
import pytest
from defs.common import convert_weights, venv_check_call
from defs.conftest import skip_post_blackwell
from defs.trt_test_alternative import check_call
# TODO: remove skip after support NGram on B200
@skip_post_blackwell
@pytest.mark.parametrize("batch_size", [1, 2], ids=['bs1', 'bs2'])
@pytest.mark.parametrize("data_type", ['float16'])
@pytest.mark.parametrize("max_draft_len", [4, 8],
ids=['max_draft_len_4', 'max_draft_len_8'])
@pytest.mark.parametrize(
"max_matching_ngram_size", [2, 4],
ids=['max_matching_ngram_size_2', 'max_matching_ngram_size_4'])
@pytest.mark.parametrize("use_logits", [False, True],
ids=['use_tokens', 'use_logits']) # useless yet
@pytest.mark.parametrize("use_py_session", [False], ids=["use_cpp_session"])
@pytest.mark.parametrize("ngram_root", ["gpt2"], indirect=True)
@pytest.mark.parametrize("streaming", [False, True],
ids=["no_streaming", "streaming"])
def test_llm_ngram_1gpu(batch_size, data_type, max_draft_len,
max_matching_ngram_size, use_logits, use_py_session,
ngram_root, streaming, ngram_example_root,
llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir,
engine_dir):
model_name = "ngram"
print("Build checkpoint ...")
model_dir = convert_weights(llm_venv=llm_venv,
example_root=ngram_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=ngram_root,
data_type=data_type)
print("Build engines ...")
target_engine_dir = engine_dir + "-target"
baseline_engine_dir = engine_dir + "-baseline"
common_build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--max_batch_size={batch_size}",
f"--max_beam_width=1",
"--max_input_len=1024",
"--max_seq_len=1536",
"--use_paged_context_fmha=enable",
f"--gpt_attention_plugin={data_type}",
f"--gemm_plugin={data_type}",
]
target_model_build_cmd = deepcopy(common_build_cmd)
target_model_build_cmd.extend([
f"--output_dir={target_engine_dir}",
"--speculative_decoding_mode=draft_tokens_external",
f"--max_draft_len={max_draft_len+1}",
])
baseline_model_build_cmd = deepcopy(common_build_cmd)
baseline_model_build_cmd.extend([
f"--output_dir={baseline_engine_dir}",
])
check_call(" ".join(target_model_build_cmd),
shell=True,
env=llm_venv._new_env)
check_call(" ".join(baseline_model_build_cmd),
shell=True,
env=llm_venv._new_env)
print("Run inferences ...")
common_run_cmd = [
f"{ngram_example_root}/../run.py",
f"--tokenizer_dir={ngram_root}",
f"--max_output_len=64",
f"--kv_cache_enable_block_reuse",
f"--kv_cache_free_gpu_memory_fraction=0.25",
]
if streaming:
common_run_cmd.extend(["--streaming", "--streaming_interval=1"])
if batch_size == 1:
common_run_cmd.extend(["--input_text", "'How are you?'"])
elif batch_size == 2:
common_run_cmd.extend(["--input_text", "'Hello'", "'How are you?'"])
else:
assert False, "Only batch_size <=2 is supported in test."
assert not use_py_session, "Only CPP session is supported in Draft-Target-Model."
run_cmd = deepcopy(common_run_cmd)
ngram_config = f"[{max_draft_len},{max_matching_ngram_size},[0]]"
run_cmd.extend([
f"--engine_dir={target_engine_dir}",
f"--ngram_config={ngram_config}",
f"--output_csv={engine_dir}/ngram_output.csv",
])
baseline_run_cmd = deepcopy(common_run_cmd)
baseline_run_cmd.extend([
f"--engine_dir={baseline_engine_dir}",
f"--output_csv={engine_dir}/baseline_output.csv",
])
venv_check_call(llm_venv, run_cmd)
venv_check_call(llm_venv, baseline_run_cmd)
print("Compare outputs ...")
with open(f"{engine_dir}/ngram_output.csv") as dt_f, open(
f"{engine_dir}/baseline_output.csv") as b_f:
for bs, (dt_request,
b_request) in enumerate(zip(csv.reader(dt_f),
csv.reader(b_f))):
assert (
len(dt_request) == len(b_request)
), f"Output length at ({bs=}) is different ({len(dt_request)} v.s. {len(b_request)})."
for index, (dt, b) in enumerate(zip(dt_request, b_request)):
assert (
int(dt) == int(b)
), f"Output at ({bs=}, {index=}) is different ({dt} v.s. {b})."
if batch_size > 1 or streaming: # Summarize tests for only batch_size=1 and streaming=False.
return
print("Run summarize...")
ngram_config = f"[{max_draft_len},{max_matching_ngram_size},[0]]"
run_cmd = [
f"{ngram_example_root}/../summarize.py",
"--test_hf",
"--test_trt_llm",
"--check_accuracy",
"--batch_size=1",
f"--hf_model_dir={ngram_root}",
f"--engine_dir={target_engine_dir}",
f"--dataset_dir={llm_datasets_root}",
f"--rouge_dir={llm_rouge_root}",
"--kv_cache_enable_block_reuse",
f"--ngram_config={ngram_config}",
"--tensorrt_llm_rouge1_threshold=20",
f"--kv_cache_free_gpu_memory_fraction=0.25",
]
venv_check_call(llm_venv, run_cmd)