TensorRT-LLMs/cpp/tensorrt_llm/thop/fp8Op.h
Yihan Wang 9df4dad3b6
[None][fix] Introduce inline namespace to avoid symbol collision (#9541)
Signed-off-by: Yihan Wang <yihwang@nvidia.com>
2025-12-12 23:32:15 +08:00

91 lines
3.7 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/config.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/kernels/quantization.h"
#include "tensorrt_llm/thop/thUtils.h"
#include <ATen/cuda/EmptyTensor.h>
#include <cuda_fp16.h>
#include <cstdint>
TRTLLM_NAMESPACE_BEGIN
namespace torch_ext
{
// Given the rowIdx and colIdx in the unswizzled SFMatrix, compute the 1D offset in the swizzled SFMatrix.
// colIdx and totalCloumn should be in SFMatrix, not activation Matrix, so no sfVecSize needed.
inline int computeSFIndex(int rowIdx, int colIdx, int totalRow, int totalColumn,
tensorrt_llm::QuantizationSFLayout layout, bool useUE8M0 = false)
{
constexpr int kColumnGroup0Size = 4;
constexpr int kRowGroup0Size = 32;
constexpr int kRowGroup1Size = kRowGroup0Size * 4;
// Swizzled layout is used as default layout.
if (layout == tensorrt_llm::QuantizationSFLayout::SWIZZLED)
{
// int paddedRow = PadUpFn(totalRow, 128);
int paddedColumn = PadUpFn(totalColumn, 4);
int columnIdxInGroup0 = colIdx % kColumnGroup0Size;
int columnGroupIdx = colIdx / kColumnGroup0Size;
constexpr int columnGroupStride = kColumnGroup0Size * kRowGroup1Size;
int rowIdxInGroup0 = rowIdx % kRowGroup0Size;
int rowIdxInGroup1 = (rowIdx % kRowGroup1Size) / kRowGroup0Size;
int rowGroupIdx = rowIdx / kRowGroup1Size;
constexpr int rowGroup1Stride = kColumnGroup0Size;
constexpr int rowGroup0Stride = kColumnGroup0Size * rowGroup1Stride;
int rowGroupStride = kRowGroup1Size * paddedColumn;
return columnIdxInGroup0 + columnGroupIdx * columnGroupStride + rowIdxInGroup0 * rowGroup0Stride
+ rowIdxInGroup1 * rowGroup1Stride + rowGroupIdx * rowGroupStride;
}
// Linear layout is only used in E2M1AndUFP8SFScaleToFloatV2.
else if (layout == tensorrt_llm::QuantizationSFLayout::LINEAR)
{
// no padding needed. totalColumn is multiple of kVecSize.
return rowIdx * totalColumn + colIdx;
}
else
{
TLLM_THROW("Other layout not implemented yet.");
}
}
std::tuple<torch::Tensor, torch::Tensor> symmetric_quantize_weight(torch::Tensor weight);
std::tuple<torch::Tensor, torch::Tensor> symmetric_quantize_activation(torch::Tensor activation);
std::tuple<torch::Tensor, torch::Tensor> symmetric_quantize_per_tensor(torch::Tensor input);
std::tuple<torch::Tensor, torch::Tensor> symmetric_static_quantize_weight(torch::Tensor weight, torch::Tensor scales);
std::tuple<torch::Tensor, torch::Tensor> symmetric_static_quantize_activation(
torch::Tensor activation, torch::Tensor scales);
std::tuple<torch::Tensor, torch::Tensor> symmetric_static_quantize_per_tensor(
torch::Tensor input, torch::Tensor scales);
torch::Tensor symmetric_dequantize_weight(torch::Tensor weight, torch::Tensor scales);
torch::Tensor symmetric_dequantize_activation(torch::Tensor activation, torch::Tensor scales);
torch::Tensor symmetric_dequantize_per_tensor(torch::Tensor input, torch::Tensor scales);
} // namespace torch_ext
TRTLLM_NAMESPACE_END