TensorRT-LLMs/cpp/tests/unit_tests/layers/randomLlm.cpp
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

338 lines
12 KiB
C++

/*
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tests/unit_tests/layers/randomLlm.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/layers/lookaheadDecodingUtils.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/iBuffer.h"
#include "tensorrt_llm/runtime/iTensor.h"
namespace tensorrt_llm::tests::layers
{
using namespace tensorrt_llm::layers;
TensorPtr initTensor(std::string str, std::optional<ITensor::Shape> shape)
{
auto shape1d = ITensor::makeShape({static_cast<SizeType32>(str.size())});
if (shape)
{
TLLM_CHECK(ITensor::volume(shape1d) == ITensor::volume(shape.value()));
}
TensorPtr tensor = BufferManager::cpu(shape.value_or(shape1d), nvinfer1::DataType::kINT32);
auto tensorRange = BufferRange<TokenIdType>(*tensor);
std::copy(str.begin(), str.end(), tensorRange.begin());
return tensor;
}
TensorConstPtr RandomTokenLogits::tokenToLogits(TokenIdType token) const
{
TensorPtr logits = BufferManager::cpu(mVocabulary->getShape(), nvinfer1::DataType::kFLOAT);
tokenToLogits(logits, token);
return logits;
}
void RandomTokenLogits::tokenToLogits(TensorPtr const& logits, TokenIdType token) const
{
TLLM_CHECK_WITH_INFO(logits->shapeEquals({getVocabSize()}), "%s != {%d}",
ITensor::toString(logits->getShape()).c_str(), getVocabSize());
auto logitsRange = BufferRange<float>(*logits);
auto vocabRange = BufferRange<TokenIdType const>(*mVocabulary);
auto itl = logitsRange.begin();
auto itv = vocabRange.begin();
for (; itl != logitsRange.end() && itv != vocabRange.end(); itl++, itv++)
{
bool match = (*itv == token);
*itl = (match ? 1.0 : 0.0) + (static_cast<float>(rand() % 256) / 1000.0);
}
}
TokenIdType RandomTokenLogits::logitsToToken(TensorConstPtr const& logits) const
{
TLLM_CHECK(logits->shapeEquals({getVocabSize()}));
auto logitsRange = BufferRange<float const>(*logits);
auto vocabRange = BufferRange<TokenIdType const>(*mVocabulary);
float max = -FLT_MAX;
TokenIdType result;
auto itl = logitsRange.begin();
auto itv = vocabRange.begin();
for (; itl != logitsRange.end() && itv != vocabRange.end(); itl++, itv++)
{
float cur = exp(*itl);
if (cur > max)
{
max = cur;
result = *itv;
}
}
return result;
}
std::list<TensorConstPtr> RandomTokenLogits::stringToLogits(std::string tokens) const
{
std::list<TensorConstPtr> result;
for (auto& token : tokens)
{
result.push_back(tokenToLogits(static_cast<TokenIdType>(token)));
}
return result;
}
void RandomTokenLogits::stringToLogits(TensorPtr const& logits, std::string tokens) const
{
TLLM_CHECK(logits->shapeEquals({static_cast<SizeType32>(tokens.size()), getVocabSize()}));
auto i = 0;
for (auto& token : tokens)
{
tokenToLogits(ITensor::at(logits, {i++}), static_cast<TokenIdType>(token));
}
}
void RandomTokenLogits::tensorToLogits(TensorPtr const& logits, TensorConstPtr const& tokens) const
{
TLLM_CHECK(ITensor::volume(logits->getShape()) == ITensor::volume(tokens->getShape()) * getVocabSize());
// TLLM_CHECK(logits->shapeEquals({static_cast<SizeType32>(tokens.size()), getVocabSize()}));
auto tokensRange = BufferRange<TokenIdType const>(*tokens);
auto i = 0;
for (auto it = tokensRange.begin(); it != tokensRange.end(); it++)
{
tokenToLogits(ITensor::at(logits, {i++}), *it);
}
}
std::string RandomTokenLogits::logitsToString(std::list<TensorConstPtr> logits) const
{
std::string result;
for (auto& token : logits)
{
result.push_back(logitsToToken(token));
}
return result;
}
std::string RandomTokenLogits::logitsToString(TensorConstPtr const& logits) const
{
auto len = logits->getShape().d[0];
std::string result;
for (auto i = 0; i < len; i++)
{
result.push_back(logitsToToken(ITensor::at(logits, {i})));
}
return result;
}
void RandomTokenLogits::logitsToTensor(TensorPtr const& tokens, TensorConstPtr const& logits) const
{
auto len = logits->getShape().d[0];
TLLM_CHECK(tokens->getShape().d[0] >= len);
auto tokensRange = BufferRange<TokenIdType>(*tokens);
for (auto i = 0; i < len; i++)
{
tokensRange[i] = logitsToToken(ITensor::at(logits, {i}));
}
}
TensorConstPtr RandomTokenLogits::logitsToTensor(TensorConstPtr const& logits) const
{
auto len = logits->getShape().d[0];
TensorPtr result = BufferManager::cpu(ITensor::makeShape({len}), nvinfer1::DataType::kINT32);
logitsToTensor(result, logits);
return result;
}
SizeType32 RandomTokenLogits::getVocabSize() const
{
return ITensor::volume(mVocabulary->getShape());
}
TokenIdType const RandomTokenLogits::getInvalidToken() const
{
return *(BufferRange<TokenIdType const>(*mVocabulary).end() - 1);
}
TokenIdType const RandomTokenLogits::getEndToken() const
{
return *(BufferRange<TokenIdType const>(*mVocabulary).end() - 2);
}
void RandomLlm::sampleByMask(TensorPtr const& inout, TensorConstPtr const& mask) const
{
auto len = ITensor::volume(mask->getShape());
TLLM_CHECK(len == ITensor::volume(mask->getShape()));
auto inoutRange = BufferRange<TokenIdType>(*inout);
auto maskRange = BufferRange<bool const>(*mask);
auto invalid = mTable->getInvalidToken();
for (SizeType32 i = 0; i < len; i++)
{
if (!maskRange[i])
{
inoutRange[i] = invalid;
}
}
}
bool RandomLlm::verify(SizeType32 const offset, TensorConstPtr const& script) const
{
auto oracleRange = BufferRange<TokenIdType const>(*mOracle);
auto scriptRange = BufferRange<TokenIdType const>(*script);
auto len = ITensor::volume(script->getShape());
auto result = std::equal(oracleRange.begin() + offset, oracleRange.begin() + offset + len, scriptRange.begin());
if (!result)
{
std::string gold(len, '#');
std::string wrong(len, '#');
std::copy(oracleRange.begin() + offset, oracleRange.begin() + offset + len, gold.begin());
std::copy(scriptRange.begin(), scriptRange.end(), wrong.begin());
TLLM_CHECK_WITH_INFO(result, "len=%ld, gold='%s', script='%s'", len, gold.c_str(), wrong.c_str());
}
return result;
}
void RandomLlm::forward(TensorPtr const& output, runtime::SizeType32 startId, TensorConstPtr const& input,
TensorConstPtr const& offsets, TensorConstPtr const mask) const
{
TensorPtr posIds = BufferManager::cpu(input->getShape(), nvinfer1::DataType::kINT32);
BufferRange<SizeType32> idRange(*posIds);
BufferRange<SizeType32 const> offsetRange(*offsets);
for (auto i = 0; i < idRange.size(); i++)
{
idRange[i] = startId + offsetRange[i];
}
forward(output, input, posIds, mask);
}
void RandomLlm::forward(TensorPtr const& output, TensorConstPtr const& input, TensorConstPtr const& position,
TensorConstPtr const mask) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(ITensor::volume(input->getShape()) == ITensor::volume(position->getShape()));
TLLM_CHECK(ITensor::volume(output->getShape()) == ITensor::volume(input->getShape()) * mTable->getVocabSize());
TensorPtr tokens = BufferManager::cpu(input->getShape(), nvinfer1::DataType::kINT32);
foretell(tokens, input, position, mask);
// foretellOld(tokens, input, position);
mTable->tensorToLogits(output, tokens);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void LookaheadRandomLlm::foretell(TensorPtr const& output, TensorConstPtr const& input, TensorConstPtr const& position,
TensorConstPtr const mask) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto len = ITensor::volume(input->getShape());
TLLM_CHECK(ITensor::volume(position->getShape()) == len);
TLLM_CHECK(ITensor::volume(output->getShape()) >= len);
if (mask)
{
TLLM_CHECK(ITensor::volume(mask->getShape()) >= len * len);
TLLM_CHECK(mask->getShape().d[0] >= len);
TLLM_CHECK(mask->getShape().d[1] >= len);
}
TensorPtr maskRebuilt = BufferManager::cpu(ITensor::makeShape({len, len}), nvinfer1::DataType::kBOOL);
posIdsToMask(maskRebuilt, position);
auto outputRange = BufferRange<TokenIdType>(*output);
auto inputRange = BufferRange<TokenIdType const>(*input);
auto positionRange = BufferRange<SizeType32 const>(*position);
auto maskLocation = mask ? BufferLocation<bool const>(*mask) : BufferLocation<bool const>(*maskRebuilt);
auto oracleRange = BufferRange<SizeType32 const>(*mOracle);
auto olen = ITensor::volume(mOracle->getShape());
auto verifyStart = 2;
for (; verifyStart < len - 1; verifyStart++)
{
if (positionRange[verifyStart] == positionRange[0] + 1)
{
break;
}
}
auto invalid = mTable->getInvalidToken();
TLLM_CHECK(positionRange[0] + 1 < olen);
for (auto i = 0; i < len; i++)
{
bool legal = positionRange[i] + 1 < olen;
bool right = true;
for (auto j = 0; j < i; j++)
{
right &= maskLocation.at(i, j) ? oracleRange[positionRange[j]] == inputRange[j] : true;
}
if (i < verifyStart && false)
{ // lookahead might be right. Since we verify lookahead branch, then must be right.
outputRange[i] = ((right || rand() % 5) && legal) ? oracleRange[positionRange[i] + 1] : invalid;
}
else
{ // verify should be wrong.
outputRange[i] = (right && legal) ? oracleRange[positionRange[i] + 1] : invalid;
}
}
}
void LookaheadRandomLlm::posIdsToMask(TensorPtr const& mask, TensorConstPtr const& posIds) const
{
auto len = ITensor::volume(posIds->getShape());
TLLM_CHECK(ITensor::volume(mask->getShape()) >= len * len);
auto posIdsRange = BufferRange<SizeType32 const>(*posIds);
auto maskRange = BufferRange<bool>(*mask);
for (auto i = 0; i < maskRange.size(); i++)
{
maskRange[i] = false;
}
std::vector<std::pair<SizeType32, SizeType32>> stack;
stack.push_back(std::make_pair(0, posIdsRange[0]));
maskRange[0 * len + 0] = true;
for (auto i = 1; i < len; i++)
{
auto cur = posIdsRange[i];
while (stack.size() > 0 && cur <= stack.back().second)
{
stack.pop_back();
}
TLLM_CHECK(stack.size() > 0 ? cur == stack.back().second + 1 : true);
stack.push_back(std::make_pair(i, cur));
for (auto prev : stack)
{
maskRange[i * len + prev.first] = true;
}
}
}
void LookaheadRandomLlm::maskToPosIds(TensorPtr const& posIds, TensorConstPtr const& mask, SizeType32 start) const
{
auto len = ITensor::volume(posIds->getShape());
TLLM_CHECK(ITensor::volume(mask->getShape()) >= len * len);
auto posIdsRange = BufferRange<SizeType32>(*posIds);
auto maskLocation = BufferLocation<bool const>(*mask);
for (auto i = 0; i < len; i++)
{
posIdsRange[i] = start;
for (auto j = 0; j < i; j++)
{
posIdsRange[i] += maskLocation.at(i, j);
}
}
}
} // namespace tensorrt_llm::tests::layers