TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/gptDecoder.h
石晓伟 850b6fa1e7
Update TensorRT-LLM (#1358)
Co-authored-by: Kaiyu <26294424+kaiyux@users.noreply.github.com>
2024-03-26 20:47:14 +08:00

147 lines
6.0 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/decodingInput.h"
#include "tensorrt_llm/runtime/decodingMode.h"
#include "tensorrt_llm/runtime/decodingOutput.h"
#include "tensorrt_llm/runtime/gptModelConfig.h"
#include "tensorrt_llm/runtime/samplingConfig.h"
#include "tensorrt_llm/runtime/worldConfig.h"
#include <curand_kernel.h>
#include <memory>
#include <NvInferRuntime.h>
namespace tensorrt_llm
{
namespace layers
{
// Forward declaration
template <typename T>
class DynamicDecodeLayer;
} // namespace layers
namespace runtime
{
class IGptDecoder
{
public:
using TensorPtr = std::shared_ptr<ITensor>;
virtual ~IGptDecoder() = default;
virtual void setup(SamplingConfig const& samplingConfig, size_t batchSize, SizeType maxSequenceLength,
std::optional<TensorPtr> const& batchSlots = std::nullopt)
= 0;
virtual bool forward(DecodingOutput& output, DecodingInput const& input) = 0;
virtual void forwardAsync(DecodingOutput& output, DecodingInput const& input) = 0;
virtual void gatherTree(ITensor& finalOutputIds, DecodingOutput const& decodingOutput,
DecodingInput const& decodingInput, BufferManager const& manager)
= 0;
virtual SamplingConfig const& getSamplingConfig() = 0;
static void acceptDraftTokensByIds(ITensor const& targetTokenIds, ITensor const& draftTokenIds,
ITensor const& contextLengths, ITensor const& numDraftTokens, ITensor& sequenceLengths,
ITensor const& finishedVec, ITensor& finishedFinal, ITensor& finishedSum, ITensor const& batchSlots,
BufferManager::CudaStreamPtr const& stream);
static void acceptDraftTokensByLogits(ITensor& draftLogits, ITensor const& targetLogits, ITensor& draftProbs,
ITensor& targetProbs, ITensor const& numDraftTokens, ITensor& finished, ITensor const& batchSlots,
SizeType vocabSize, SizeType vocabSizePadded, bool useRandomAcceptThreshold, float randomAcceptThreshold,
curandState_t* curandState, BufferManager::CudaStreamPtr const& stream);
static void updateKVCacheBasedOnAcceptedTokens(ITensor const& acceptedOffsets, ITensor const& packedAcceptedIds,
ITensor const& pointerArray, ITensor const& pastKeyValueLengths, GptModelConfig const& modelConfig,
WorldConfig const& worldConfig, BufferManager::CudaStreamPtr stream, SizeType rewindDraftTokenCount,
SizeType maxAttentionWindow, SizeType maxBlocksPerSeq, nvinfer1::DataType dtype);
static std::unique_ptr<IGptDecoder> create(DecodingMode const& mode, nvinfer1::DataType dtype, size_t maxBatchSize,
size_t maxBeamWidth, size_t vocabSize, size_t vocabSizePadded, size_t maxSequenceLength,
BufferManager::CudaStreamPtr const& stream, std::optional<runtime::SizeType> maxTokensPerStep = std::nullopt,
std::optional<runtime::SizeType> maxNumMedusaHeads = std::nullopt);
};
template <typename T>
class GptDecoder : public virtual IGptDecoder
{
public:
using CudaStreamPtr = BufferManager::CudaStreamPtr;
using TensorPtr = std::shared_ptr<ITensor>;
GptDecoder(DecodingMode const& mode, size_t maxBatchSize, size_t maxBeamWidth, size_t vocabSize,
size_t vocabSizePadded, size_t maxSequenceLength, CudaStreamPtr const& stream,
std::optional<runtime::SizeType> maxTokensPerStep = std::nullopt,
std::optional<runtime::SizeType> maxNumMedusaHeads = std::nullopt);
void setup(SamplingConfig const& samplingConfig, size_t batchSize, SizeType maxSequenceLength,
std::optional<TensorPtr> const& batchSlots = std::nullopt) override;
bool forward(DecodingOutput& output, DecodingInput const& input) override;
void forwardAsync(DecodingOutput& output, DecodingInput const& input) override;
void gatherTree(ITensor& finalOutputIds, DecodingOutput const& decodingOutput, DecodingInput const& decodingInput,
BufferManager const& manager) override;
SamplingConfig const& getSamplingConfig() override
{
return mSamplingConfig;
}
private:
BufferManager mManager;
std::shared_ptr<tensorrt_llm::layers::DynamicDecodeLayer<T>> mDynamicDecodeLayer;
TensorPtr mLogProbsTiled; // Buffer used to store the transpose of the logProbs. Needed because the kernels have
// been written to use that shape.
SamplingConfig mSamplingConfig;
cudaDeviceProp mProp; // Avoid dangling pointers in mDynamicDecodeLayer
size_t mMaxBatchSize;
};
inline std::unique_ptr<IGptDecoder> IGptDecoder::create(DecodingMode const& mode, nvinfer1::DataType dtype,
size_t maxBatchSize, size_t maxBeamWidth, size_t vocabSize, size_t vocabSizePadded, size_t maxSequenceLength,
BufferManager::CudaStreamPtr const& stream, std::optional<runtime::SizeType> maxTokensPerStep,
std::optional<runtime::SizeType> maxNumMedusaHeads)
{
switch (dtype)
{
case nvinfer1::DataType::kFLOAT:
return std::make_unique<GptDecoder<float>>(mode, maxBatchSize, maxBeamWidth, vocabSize, vocabSizePadded,
maxSequenceLength, stream, maxTokensPerStep, maxNumMedusaHeads);
case nvinfer1::DataType::kHALF:
return std::make_unique<GptDecoder<half>>(mode, maxBatchSize, maxBeamWidth, vocabSize, vocabSizePadded,
maxSequenceLength, stream, maxTokensPerStep, maxNumMedusaHeads);
default: return nullptr;
}
}
} // namespace runtime
} // namespace tensorrt_llm