TensorRT-LLMs/cpp/tensorrt_llm/kernels/beamSearchTopkKernels.h
2024-03-19 17:36:42 +08:00

97 lines
4.6 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/kernels/decodingCommon.h"
#include <cuda_runtime.h>
namespace tensorrt_llm
{
namespace kernels
{
// We keep tracing `beam_width` beams during iterations, once a beam is finished,
// we record the ids and its normed score in output_ids_tgt and normed_scores
struct BeamHypotheses
{
// BS: batch_size
// BM: beam_width
// mSL: max_seq_length
// %%: parameter name when we call [generation.py] dynamic_decoder.forward (python workflow)
// Pointers initialized in these two functions below:
// [gptDecoder.cpp] GptDecoder<T>::forward or [dynamicDecodeOp.cpp] FtDynamicDecode<T>::forward
bool* is_done{nullptr}; // [BS] %% self.beam_hyps_is_done
float* cum_log_probs{nullptr}; // [BS, BM*2] %% self.beam_hyps_cum_log_probs
float* log_probs{nullptr}; // [BS, BM*2, mSL] %% self.beam_hyps_log_probs
float* min_normed_scores{nullptr}; // [BS] %% self.beam_hyps_min_normed_scores
float* normed_scores{nullptr}; // [BS, BM*2] %% self.beam_hyps_normed_scores
int* num_beams{nullptr}; // [BS] %% self.beam_hyps_num_beams
int* output_ids_tgt{nullptr}; // [BS, BM*2, mSL] %% self.beam_hyps_output_ids_tgt
int* sequence_lengths_tgt{nullptr}; // [BS, BM*2] %% self.beam_hyps_sequence_lengths_tgt
int const* input_lengths{nullptr}; // [BS*BM] %% context_length
// Pointers initialized in [onlineBeamSearchLayer.cu] invokeSoftMax:
int const* end_ids{nullptr}; // [BS*BM] %% self.end_ids
FinishedState* finished; // [BS*BM] %% self.finished
float* cum_log_probs_src{nullptr}; // [BS, BM] %% self.cum_log_probs
float* log_probs_src{nullptr}; // [mSL, BS, BM] %% self.log_probs_tiled
int* sequence_lengths_src{nullptr}; // [BS*BM] %% self.sequence_length_buffer
// These two pointers are relocated in [dynamicDecodeLayer.cpp] DynamicDecodeLayer<T>::prepareIdsPtrs
int** output_ids_tgt_ptr{nullptr}; // [BS][BM, mSL] %% self.output_ids
int** parent_ids_tgt_ptr{nullptr}; // [BS][BM, mSL] %% self.parent_ids
float* diversity_rates{nullptr}; // [BS] from SamplingConfig
float* length_penalties{nullptr}; // [BS] from SamplingConfig
int* early_stoppings{nullptr}; // [BS] from SamplingConfig
// Pointers for function gatherTree
int const* output_ids_src{nullptr}; //
int const* parent_ids_src{nullptr}; //
// Scalar values
bool is_return_normed_score{true}; // return normed_cum_log_probs or cum_log_probs, always be true now
int batch_size{0}; //
int beam_width{0}; //
int ite{0}; // index of local_batch, always be 0 if pp_size==1
int local_batch_size{0}; //
int max_seq_len{0}; //
int step{0}; // only used in [beamSearchTopkKernels.cu], always be 0 in [onlineSoftmaxBeamsearchKernels*.cu.h]
int vocab_size{0}; // vocab_size_padded
};
template <typename T>
__device__ __forceinline__ T apply_length_penalty(T log_prob, int length, float length_penalty)
{
// score = log(prob) / (length ^ length_penalty)
if (length_penalty == 0.0f || length == 1)
{
return log_prob;
}
return log_prob / static_cast<T>(powf(static_cast<float>(length), length_penalty));
}
template <typename T>
void invokeTopkBeamSearch(void* workspace, size_t& workspace_size, T* log_probs, int* ids, BeamHypotheses* beam_hyps,
bool const* finished, int const* sequence_lengths, int const batch_size, int const beam_width,
int const vocab_size_padded_, const T diversity_rate, float const length_penalty, int const* end_ids,
cudaStream_t stream);
void invokeInsertUnfinishedPath(BeamHypotheses beam_hyps, FinishedState const* finished, float const* cum_log_probs,
int const batch_size, int const beam_width, cudaStream_t stream);
} // namespace kernels
} // namespace tensorrt_llm