TensorRT-LLMs/tensorrt_llm/models/qwen/weight.py
石晓伟 850b6fa1e7
Update TensorRT-LLM (#1358)
Co-authored-by: Kaiyu <26294424+kaiyux@users.noreply.github.com>
2024-03-26 20:47:14 +08:00

200 lines
7.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from typing import List
import torch
from tqdm import tqdm
from ..._utils import str_dtype_to_torch
from ...logger import logger
from ...mapping import Mapping
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return torch.chunk(v, tp_size)[idx].contiguous()
else:
return torch.chunk(v, tp_size, dim=dim)[idx].contiguous()
def load_from_gptq_qwen(
model,
num_hidden_layers=None,
mapping=Mapping(),
dtype="float16",
):
logger.info("loading weights from groupwise GPTQ QWen safetensors...")
weights = {}
tik = time.time()
model_params = {k: v for k, v in model.state_dict().items()}
torch.cuda.empty_cache()
def torch_split(v, dim):
if v.shape[dim] % mapping.tp_size != 0:
logger.error(
"Current weight shape is invalid for mapping.tp_size=" +
str(mapping.tp_size))
assert False, "Invalid TP size"
return v.split(v.shape[dim] // mapping.tp_size,
dim=dim)[mapping.tp_rank]
def unpack_int32_into_int8(w_packed):
# unpack inputs packed in int32/float32 into uint4 and store them in int8 format
w_packed_int4x2 = w_packed.contiguous().view(torch.uint8)
w_unpacked = torch.zeros(w_packed_int4x2.shape[0],
w_packed_int4x2.shape[1] * 2,
dtype=torch.int8)
w_unpacked[:, ::2] = w_packed_int4x2 % 16
w_unpacked[:, 1::2] = w_packed_int4x2 // 16
return w_unpacked.contiguous()
def process_and_assign_weight(v: List[torch.Tensor],
tllm_prex: str,
tp_dim: int = -1):
if tp_dim == -1:
qweight_int32, qzeros_int32, scales_fp16 = [
item.cpu() for item in v
]
else:
qweight_int32, qzeros_int32, scales_fp16 = [
torch_split(item, tp_dim).cpu() for item in v
]
USE_UINT4_INPUT = 1 # Set to true if checkpoint store UINT4 weights
USE_GPTQ_FOR_LLAMA = 1 # GPTQ-for-LLaMA added 1 to zeros
qweight_unpacked_int8 = unpack_int32_into_int8(
qweight_int32.T).T.contiguous() - 8
qweight_interleaved = preprocessor(packer(qweight_unpacked_int8),
torch.quint4x2).view(torch.float16)
# zeros = zeros * scales
qzeros_unpacked_int32 = unpack_int32_into_int8(qzeros_int32)
if not USE_UINT4_INPUT:
# Correcting UINT4 values back to INT4 order
mask_negative = qzeros_unpacked_int32[qzeros_unpacked_int32 < 0]
mask_positive = qzeros_unpacked_int32[qzeros_unpacked_int32 >= 0]
qzeros_unpacked_int32 = qzeros_unpacked_int32 + 16 * mask_negative - 16 * mask_positive
zeros_x_scales_fp16 = (-qzeros_unpacked_int32 + 8 * USE_UINT4_INPUT -
USE_GPTQ_FOR_LLAMA) * scales_fp16
zeros_x_scales_fp16 = zeros_x_scales_fp16.half()
results = {
f'{tllm_prex}.weight': qweight_interleaved,
f'{tllm_prex}.weights_scaling_factor': scales_fp16,
f'{tllm_prex}.zero': zeros_x_scales_fp16,
}
return results
packer = torch.ops.trtllm.pack_int8_tensor_to_packed_int4
preprocessor = torch.ops.trtllm.preprocess_weights_for_mixed_gemm
torch_dtype = str_dtype_to_torch(dtype)
# Load weights from GPTQ checkpoint into TRT-LLM module
# 1. vocab_embedding
v = model_params['transformer.wte.weight']
if mapping.is_first_pp_rank():
weights['transformer.vocab_embedding.weight'] = v.to(torch_dtype)
# 2. ln_f
v = model_params['transformer.ln_f.weight']
if mapping.is_last_pp_rank():
weights['transformer.ln_f.weight'] = v.to(torch_dtype)
# 3. lm_head
v = model_params['lm_head.weight']
if mapping.is_last_pp_rank():
weights['lm_head.weight'] = torch_split(v, 0).to(torch_dtype)
# 4. Weights inside each layer
layers_per_pipeline_stage = num_hidden_layers // mapping.pp_size
layers_range = list(
range(mapping.pp_rank * layers_per_pipeline_stage,
(mapping.pp_rank + 1) * layers_per_pipeline_stage, 1))
suffixs = ["qweight", "qzeros", "scales"]
for l in tqdm(layers_range, desc="loading weight in each layer..."):
layer_idx = l - mapping.pp_rank * layers_per_pipeline_stage
prefix = "transformer.h." + str(layer_idx) + "."
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
# 4.1 attention.qkv
qkv_weight_list = []
for suf in suffixs:
qkv_part = model_params[prefix + "attn.c_attn." + suf]
qkv_weight_list.append(qkv_part)
weights.update(
process_and_assign_weight(qkv_weight_list,
f'{tllm_prex}.attention.qkv'))
# 4.2 attention.bias
qkv_bias = model_params[prefix + "attn.c_attn.bias"].to(
torch_dtype).cpu().contiguous()
q_emb = qkv_bias.shape[0] // 3
qkv_bias = qkv_bias.reshape(3, q_emb)
split_v = split(qkv_bias, mapping.tp_size, mapping.rank, dim=1)
split_v = split_v.reshape(3 * (q_emb // mapping.tp_size))
weights[tllm_prex + ".attention.qkv.bias"] = split_v
# 4.3 attention.dense
qkv_dense_list = []
for suf in suffixs:
qkv_dense_part = model_params[prefix + "attn.c_proj." + suf]
qkv_dense_list.append(qkv_dense_part)
weights.update(
process_and_assign_weight(qkv_dense_list,
f'{tllm_prex}.attention.dense',
tp_dim=0))
# 4.4 mlp.gate
mlp_gate_list = []
for suf in suffixs:
mlp_gate_part = model_params[prefix + "mlp.w1." + suf]
mlp_gate_list.append(mlp_gate_part)
weights.update(
process_and_assign_weight(mlp_gate_list,
f'{tllm_prex}.mlp.gate',
tp_dim=1))
# 4.5 mlp.proj
mlp_proj_list = []
for suf in suffixs:
mlp_proj_part = model_params[prefix + "mlp.c_proj." + suf]
mlp_proj_list.append(mlp_proj_part)
weights.update(
process_and_assign_weight(mlp_proj_list,
f'{tllm_prex}.mlp.proj',
tp_dim=0))
# 4.6 mlp.fc
mlp_fc_list = []
for suf in suffixs:
mlp_fc_part = model_params[prefix + "mlp.w2." + suf]
mlp_fc_list.append(mlp_fc_part)
weights.update(
process_and_assign_weight(mlp_fc_list,
f'{tllm_prex}.mlp.fc',
tp_dim=1))
# 4.7 input_layernorm
v = model_params[prefix + "ln_1.weight"]
weights[f'{tllm_prex}.input_layernorm.weight'] = v.to(torch_dtype)
# 4.8 post_layernorm
v = model_params[prefix + "ln_2.weight"]
weights[f'{tllm_prex}.post_layernorm.weight'] = v.to(torch_dtype)
tok = time.time()
t = time.strftime("%h:%m:%s", time.gmtime(tok - tik))
logger.info(f"weights loaded. total time: {t}")
return weights