TensorRT-LLMs/tensorrt_llm/models/stdit/config.py
2025-03-11 21:13:42 +08:00

116 lines
5.2 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Sequence
from ...mapping import Mapping
from ..modeling_utils import PretrainedConfig, QuantConfig
class STDiTModelConfig(PretrainedConfig):
def __init__(self,
architecture: str = 'STDiT3',
checkpoint_path: str = 'pretrained_ckpt/model.safetensors',
vae_type: str = "hpcai-tech/OpenSora-VAE-v1.2",
text_encoder_type: str = "DeepFloyd/t5-v1_1-xxl",
caption_channels: int = 4096,
num_hidden_layers: int = 28,
hidden_size: int = 1152,
width: int = 640,
height: int = 360,
num_frames: int = 102,
latent_size: Sequence[int] = [30, 45, 80],
stdit_patch_size: Sequence[int] = [1, 2, 2],
spatial_patch_size: Sequence[int] = [1, 8, 8],
temporal_patch_size: Sequence[int] = [4, 1, 1],
in_channels: int = 4,
input_sq_size: int = 512,
num_attention_heads: int = 16,
mlp_ratio: float = 4.0,
class_dropout_prob: float = 0.1,
model_max_length: int = 300,
learn_sigma: bool = True,
qk_norm: bool = True,
skip_y_embedder: bool = False,
dtype: Optional[str] = None,
mapping: Mapping = Mapping(),
quant_config: Optional[QuantConfig] = None,
**kwargs):
kwargs.update({
'architecture': architecture,
'num_hidden_layers': num_hidden_layers,
'num_attention_heads': num_attention_heads,
'hidden_size': hidden_size,
'dtype': dtype
})
super().__init__(**kwargs)
self.checkpoint_path = checkpoint_path
self.vae_type = vae_type
self.text_encoder_type = text_encoder_type
self.caption_channels = caption_channels
self.width = width
self.height = height
self.num_frames = num_frames
self.latent_size = latent_size
self.stdit_patch_size = stdit_patch_size
self.spatial_patch_size = spatial_patch_size
self.temporal_patch_size = temporal_patch_size
self.in_channels = in_channels
self.input_sq_size = input_sq_size
self.mlp_ratio = mlp_ratio
self.class_dropout_prob = class_dropout_prob
self.model_max_length = model_max_length
self.learn_sigma = learn_sigma
self.qk_norm = qk_norm
self.skip_y_embedder = skip_y_embedder
self.mapping = mapping
self.quant_config = quant_config
@classmethod
def from_input_config(cls,
input_config: Dict[str, Any],
dtype: str = 'auto',
mapping: Mapping = Mapping(),
quant_config: Optional[QuantConfig] = None,
**kwargs):
return cls(architecture=input_config['architecture'],
checkpoint_path=input_config['checkpoint_path'],
vae_type=input_config['vae_type'],
text_encoder_type=input_config['text_encoder_type'],
caption_channels=input_config['caption_channels'],
num_hidden_layers=input_config['num_hidden_layers'],
width=input_config['width'],
height=input_config['height'],
num_frames=input_config['num_frames'],
latent_size=input_config['latent_size'],
hidden_size=input_config['hidden_size'],
stdit_patch_size=input_config['stdit_patch_size'],
spatial_patch_size=input_config['spatial_patch_size'],
temporal_patch_size=input_config['temporal_patch_size'],
in_channels=input_config['in_channels'],
input_sq_size=input_config['input_sq_size'],
num_attention_heads=input_config['num_attention_heads'],
mlp_ratio=input_config['mlp_ratio'],
class_dropout_prob=input_config['class_dropout_prob'],
model_max_length=input_config['model_max_length'],
learn_sigma=input_config['learn_sigma'],
qk_norm=input_config['qk_norm'],
skip_y_embedder=input_config['skip_y_embedder'],
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)