TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/decodingInput.h
Kaiyu Xie 8681b3a4c0
open source 4dbf696ae9b74a26829d120b67ab8443d70c8e58 (#2297)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvanesh.sridharan@sprinklr.com>
Co-authored-by: Qingquan Song <ustcsqq@gmail.com>
2024-10-08 12:19:19 +02:00

160 lines
6.9 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include <optional>
namespace tensorrt_llm::runtime
{
/// @brief Represents the inputs to the decoder.
/// @details This input type is assumed immutable. It represents whatever the decoder received initially, and can always
/// be referred to as such.
class DecodingInput
{
public:
using TensorConstPtr = ITensor::SharedConstPtr;
using TensorPtr = ITensor::SharedPtr;
DecodingInput(SizeType32 maxLength, SizeType32 maxAttentionWindow, SizeType32 sinkTokenLength, SizeType32 batchSize,
TensorConstPtr logits, TensorPtr endIds, TensorConstPtr batchSlots)
: step{maxLength}
, maxLength{maxLength}
, maxAttentionWindow{maxAttentionWindow}
, sinkTokenLength{sinkTokenLength}
, batchSize{batchSize}
, maxStopWordsLen{0}
, maxBadWordsLen{0}
, logits{std::move(logits)}
, endIds{std::move(endIds)}
, batchSlots{std::move(batchSlots)}
{
TLLM_CHECK_WITH_INFO(static_cast<bool>(this->logits), "Invalid logits tensor");
TLLM_CHECK_WITH_INFO(static_cast<bool>(this->endIds), "Invalid endIds tensor");
}
// mandatory parameters
SizeType32 step; //!< The index of the decoding step we are on. Only used in Python runtime.
SizeType32 maxLength; //!< The maximum number of tokens to decode.
SizeType32 maxAttentionWindow; //!< The maximum length of the attention window to consider while decoding.
SizeType32 sinkTokenLength; //!< the number of tokens to use as attention sinks, as described there: @link
//!< https://arxiv.org/html/2309.17453v3
SizeType32 batchSize; //!< The number of samples in the batch.
SizeType32 maxStopWordsLen; //!< The maximum value in the `stopWordsLens` tensor.
SizeType32 maxBadWordsLen; //!< The maximum value in the `badWordsLens` tensor.
TensorConstPtr logits; //!< [batchSize, beamWidth, vocabSizePadded], on gpu. Logits are are a probability
//!< distribution over the vocabulary, the output of the model.
std::optional<std::vector<TensorConstPtr>>
logitsVec; //!< Vector of size [batchSize] contains logits of size [beamWidth, vocabSizePadded], on gpu. This is
//!< another view on the @property logits
TensorConstPtr endIds; //!< [batchSize * beamWidth], on gpu
TensorConstPtr
batchSlots; //!< [batchSize], address map of the linear batch id to to the seq slots, int32_t, pinned
// optional parameters
TensorConstPtr finishReasons; //!< [batchSize, beamWidth], finished states at current iteration.
//!< If true for some request, the decoding step of it is skipped, on gpu
TensorConstPtr
sequenceLimitLength; //!< [batchSize], on gpu. The maximum sequence length for each sequence in the batch.
TensorConstPtr embeddingBias; //!< [batchSize, vocabSizePadded], on gpu
TensorConstPtr lengths; //!< [batchSize, beamWidth], on gpu
std::vector<TensorPtr> badWordsLists; // vector with batchSize elements of size [2, badWordsLength], on gpu
TensorConstPtr badWordsPtrs; //!< [batchSize][2, badWordsLength], on gpu
TensorConstPtr badWordsLens; //!< [batchSize], on gpu
std::vector<TensorPtr> stopWordsLists; // vector with batchSize elements of size [2, stopWordsLength], on gpu
TensorConstPtr stopWordsPtrs; //!< [batchSize][2, stopWordsLength], pinned
TensorConstPtr stopWordsLens; //!< [batchSize], pinned
TensorConstPtr noRepeatNgramSize; //!< [batchSize], on gpu
// parameters for beam search
TensorPtr cacheIndirection; //!< [batchSize, beamWidth, maxSeqLen] - the k/v cache index for beam search, on gpu
// Medusa
class MedusaInputs
{
public:
TensorConstPtr medusaPaths; //!< [batchSize, maxTokensPerStep, maxMedusaHeads + 1], on gpu
TensorConstPtr medusaTreeIds; //!< [batchSize, maxTokensPerStep], on gpu
std::vector<std::vector<TensorPtr>>
medusaLogits; //!< [batchSize][maxAcceptedDraftTokensPerStep][maxDraftTokens + 1, vocabSizePadded], on gpu
TensorPtr medusaCurTokensPerStep; //!< [batchSize], on gpu
TensorConstPtr medusaTargetTokensPerStep; //!< [batchSize], on gpu
};
class ExternalDraftTokensInputs
{
public:
TensorPtr draftLogits;
TensorPtr draftProbs;
TensorPtr targetProbs;
TensorPtr numDraftTokens;
TensorPtr draftTokenIds;
TensorPtr useDraftLogits;
SizeType32 step;
float constantThreshold;
bool useRandomAcceptanceThreshold;
};
class ExplicitDraftTokensInputs
{
public:
TensorConstPtr nextDraftTokens; //!< [batchSize, maxNumPaths, maxPathLen]
TensorConstPtr nextFlatTokens; //!< [batchSize * maxDecodingTokens]
TensorConstPtr nextDraftIndices; //!< [batchSize, maxNumPaths, maxPathLen]
TensorConstPtr nextDraftProbs; //!< [batchSize, maxNumPaths, maxDraftPathLen, vocabSize]
TensorConstPtr lastDraftTokens; //!< [batchSize, maxNumPaths, maxPathLen]
TensorConstPtr lastDraftIndices; //!< [batchSize, maxNumPaths, maxPathLen]
TensorConstPtr masks; //!< [batchSize, maxDecodingTokens, maxDecodingTokens], bool
TensorConstPtr packedPositionIds; //!< [batchSize * maxDecodingTokens]
TensorConstPtr bestPathLengths; //!< [batchSize]
TensorConstPtr bestPathIndices; //!< [batchSize]
TensorConstPtr nextGenerationLengths; //!< [batchSize]
TensorConstPtr lastPositionIdsBase; //!< [batchSize]
TensorConstPtr lastGenerationLengths; //!< [batchSize]
TensorConstPtr maxGenLengthDevice; //!< [1]
TensorConstPtr seqSlots; //!< [batchSize]
};
struct LookaheadInputs
{
TensorPtr tokensPerStep;
};
std::optional<MedusaInputs> medusaInputs;
std::optional<ExplicitDraftTokensInputs> explicitDraftTokensInputs;
std::optional<LookaheadInputs> lookaheadInputs;
std::optional<ExternalDraftTokensInputs> externalDraftTokensInputs;
};
} // namespace tensorrt_llm::runtime