TensorRT-LLMs/cpp/tensorrt_llm/layers/decodingLayer.cpp
Kaiyu Xie 8681b3a4c0
open source 4dbf696ae9b74a26829d120b67ab8443d70c8e58 (#2297)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvanesh.sridharan@sprinklr.com>
Co-authored-by: Qingquan Song <ustcsqq@gmail.com>
2024-10-08 12:19:19 +02:00

316 lines
12 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "decodingLayer.h"
#include "tensorrt_llm/layers/beamSearchLayer.h"
#include "tensorrt_llm/layers/decodingParams.h"
#include "tensorrt_llm/layers/explicitDraftTokensLayer.h"
#include "tensorrt_llm/layers/externalDraftTokensLayer.h"
#include "tensorrt_llm/layers/layerUtils.h"
#include "tensorrt_llm/layers/lookaheadDecodingLayer.h"
#include "tensorrt_llm/layers/medusaDecodingLayer.h"
#include "tensorrt_llm/layers/samplingLayer.h"
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace
{
template <typename T>
bool allSame(std::optional<std::vector<T>> const& vOpt)
{
if (!vOpt)
{
return true;
}
auto const& v = *vOpt;
if (v.size() <= 1)
{
return true;
}
auto first = v[0];
for (std::size_t i = 1; i < v.size(); ++i)
{
if (v[i] != first)
{
return false;
}
}
return true;
}
bool hasDiffRuntimeArgs(std::shared_ptr<tensorrt_llm::layers::DynamicDecodeSetupParams> const& params)
{
// return !allSame(params->penaltyParams.frequencyPenalty) || !allSame(params->penaltyParams.presencePenalty)
// || !allSame(params->penaltyParams.repetitionPenalty) || !allSame(params->penaltyParams.temperature)
// || !allSame(params->penaltyParams.minLength) || !allSame(params->banWordsInputs.noRepeatNgramSize);
return false;
}
} // namespace
namespace tensorrt_llm::layers
{
template <typename T>
DecodingLayer<T>::DecodingLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain,
std::shared_ptr<BufferManager> bufferManager)
: BaseLayer(decoderDomain, bufferManager)
, mDecodingMode(mode)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (mDecodingMode.isTopKorTopP())
{
mDecodingLayer = std::make_unique<SamplingLayer<T>>(mDecodingMode, decoderDomain, mBufferManager);
}
else if (mDecodingMode.isBeamSearch())
{
mDecodingLayer = std::make_unique<BeamSearchLayer<T>>(decoderDomain, mBufferManager);
}
else if (mDecodingMode.isMedusa())
{
mDecodingLayer = std::make_unique<MedusaDecodingLayer<T>>(decoderDomain, mBufferManager);
}
else if (mDecodingMode.isLookahead())
{
mDecodingLayer = std::make_unique<LookaheadDecodingLayer<T>>(mDecoderDomain, mBufferManager);
}
else if (mDecodingMode.isExplicitDraftTokens())
{
mDecodingLayer = std::make_unique<ExplicitDraftTokensLayer<T>>(decoderDomain, mBufferManager);
}
else if (mDecodingMode.isExternalDraftTokens())
{
mDecodingLayer = std::make_unique<ExternalDraftTokensLayer<T>>(mDecodingMode, decoderDomain, mBufferManager);
}
else
{
TLLM_CHECK_WITH_INFO(false,
"Decoding mode is none of the supported {TopK, TopP, TopKTopP, BeamSearch, Medusa, Lookahead, "
"ExplicitDraftTokens}");
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void DecodingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, TensorConstPtr batchSlots,
std::shared_ptr<BaseSetupParams> const& baseSetupParams,
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto setupParams = std::dynamic_pointer_cast<DynamicDecodeSetupParams>(baseSetupParams);
TLLM_CHECK_WITH_INFO(setupParams->decodingParams, "decodingParams for setup is not set");
if (mDecodingMode.isTopKorTopP())
{ // sampling layers
TLLM_CHECK_WITH_INFO(
beamWidth == 1, "Decoding mode is TopK and/or TopP, but beamWidth != 1 (%d != 1)", beamWidth);
mDecodingLayer->setup(batchSize, beamWidth, batchSlots, setupParams->decodingParams, workspace);
}
else if (mDecodingMode.isBeamSearch())
{ // beam search layer
TLLM_CHECK_WITH_INFO(beamWidth > 1, "Decoding mode is beam search, but beamWidth <= 1 (%d <= 1)", beamWidth);
mDecodingLayer->setup(batchSize, beamWidth, batchSlots, setupParams->decodingParams, workspace);
}
else if (mDecodingMode.isMedusa())
{
TLLM_CHECK_WITH_INFO(beamWidth == 1, "Decoding mode is Medusa, but beamWidth != 1 (%d != 1)", beamWidth);
mDecodingLayer->setup(batchSize, beamWidth, batchSlots, setupParams->decodingParams, workspace);
}
else if (mDecodingMode.isLookahead())
{
TLLM_CHECK_WITH_INFO(beamWidth == 1, "Decoding mode is Lookahead, but beamWidth != 1 (%d != 1)", beamWidth);
mDecodingLayer->setup(batchSize, beamWidth, batchSlots, setupParams->decodingParams, workspace);
}
else if (mDecodingMode.isExplicitDraftTokens())
{
TLLM_CHECK_WITH_INFO(
beamWidth == 1, "Decoding mode is ExplicitDraftTokens, but beamWidth != 1 (%d != 1)", beamWidth);
mDecodingLayer->setup(batchSize, beamWidth, batchSlots, setupParams->decodingParams, workspace);
}
else if (mDecodingMode.isExternalDraftTokens())
{
TLLM_CHECK_WITH_INFO(
beamWidth == 1, "Decoding mode is external draft tokens, but beamWidth != 1 (%d != 1)", beamWidth);
mDecodingLayer->setup(batchSize, beamWidth, batchSlots, setupParams->decodingParams, workspace);
}
else
{
TLLM_CHECK_WITH_INFO(false,
"Decoding mode is none of the supported {TopK, TopP, TopKTopP, BeamSearch, Medusa, Lookahead, "
"ExplicitDraftTokens}");
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void DecodingLayer<T>::forwardAsync(std::shared_ptr<BaseDecodingOutputs> const& baseOutputs,
std::shared_ptr<BaseDecodingInputs> const& baseInputs,
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto [outputParams, inputParams] = prepareParams(baseOutputs, baseInputs);
mDecodingLayer->forwardAsync(outputParams, inputParams, workspace);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void DecodingLayer<T>::forwardSync(std::shared_ptr<BaseDecodingOutputs> const& baseOutputs,
std::shared_ptr<BaseDecodingInputs> const& baseInputs,
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto [outputParams, inputParams] = prepareParams(baseOutputs, baseInputs);
mDecodingLayer->forwardSync(outputParams, inputParams, workspace);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
size_t DecodingLayer<T>::getWorkspaceSize() const noexcept
{
return mDecodingLayer->getWorkspaceSize();
}
template <typename T>
std::tuple<std::shared_ptr<BaseDecodingOutputs>, std::shared_ptr<BaseDecodingInputs>> DecodingLayer<T>::prepareParams(
std::shared_ptr<BaseDecodingOutputs> const& baseOutputs,
std::shared_ptr<BaseDecodingInputs> const& baseInputs) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto params = std::dynamic_pointer_cast<DecodingInputs>(baseInputs);
auto const localDecoderDomain = getLocalDecoderDomain(params, mDecoderDomain);
auto const maxSeqLen = baseOutputs->outputIds->getDimension<-1>();
auto const& endIds = params->endIds;
std::shared_ptr<BaseDecodingOutputs> preparedOutputs;
std::shared_ptr<BaseDecodingInputs> preparedInputs;
if (mDecodingMode.isBeamSearch())
{
preparedInputs = baseInputs;
preparedOutputs = baseOutputs;
}
else if (mDecodingMode.isTopKorTopP())
{
auto const ite = params->ite;
auto const step = params->step;
auto const localBatchSize = static_cast<int64_t>(params->localBatchSize);
TLLM_CHECK_WITH_INFO(localDecoderDomain.getBeamWidth() == 1,
"Decoding mode is TopK and/or TopP, but beamWidth != 1 (%d != 1)", localDecoderDomain.getBeamWidth());
// In sampling, we have supported batch sampling. So, we always compute all
// sentences once.
TensorConstPtr logitsSlice = ITensor::slice(*params->logits, 0, localBatchSize);
TensorConstPtr endIdSlice = ITensor::slice(endIds, 0, localBatchSize);
auto decodeInputs = std::make_shared<SamplingInputs>(endIdSlice, params->batchSlots, step, ite, localBatchSize);
decodeInputs->finished = params->finished;
decodeInputs->logits = logitsSlice;
if (params->inputLengths)
{
auto& inputLengths = params->inputLengths.value();
decodeInputs->inputLengths = ITensor::slice(inputLengths, 0, localBatchSize);
}
preparedInputs = decodeInputs;
preparedOutputs = baseOutputs;
}
else if (mDecodingMode.isMedusa())
{
TLLM_CHECK_WITH_INFO(localDecoderDomain.getBeamWidth() == 1,
"Decoding mode is Medusa, but beamWidth != 1 (%d != 1)", localDecoderDomain.getBeamWidth());
preparedInputs = baseInputs;
preparedOutputs = baseOutputs;
}
else if (mDecodingMode.isLookahead())
{
preparedInputs = baseInputs;
preparedOutputs = baseOutputs;
}
else if (mDecodingMode.isExplicitDraftTokens())
{
// TODO(nkorobov) add explicit draft tokens layer param prep
// Simply forward params for now
preparedInputs = baseInputs;
preparedOutputs = baseOutputs;
}
else if (mDecodingMode.isExternalDraftTokens())
{
auto externalDraftTokenParams = std::dynamic_pointer_cast<ExternalDraftTokensInputs>(baseInputs);
auto const ite = externalDraftTokenParams->ite;
auto const step = externalDraftTokenParams->step;
auto const localBatchSize = static_cast<int64_t>(externalDraftTokenParams->localBatchSize);
TLLM_CHECK_WITH_INFO(localDecoderDomain.getBeamWidth() == 1,
"Decoding mode is TopK and/or TopP, but beamWidth != 1 (%d != 1)", localDecoderDomain.getBeamWidth());
// In sampling, we have supported batch sampling. So, we always compute all
// sentences once.
TensorConstPtr logitsSlice = ITensor::slice(*externalDraftTokenParams->logits, 0, localBatchSize);
TensorConstPtr endIdSlice = ITensor::slice(endIds, 0, localBatchSize);
auto decodeInputs = std::make_shared<ExternalDraftTokensInputs>(
endIdSlice, externalDraftTokenParams->batchSlots, step, ite, localBatchSize);
decodeInputs->finished = externalDraftTokenParams->finished;
decodeInputs->logits = logitsSlice;
if (externalDraftTokenParams->inputLengths)
{
auto& inputLengths = externalDraftTokenParams->inputLengths.value();
decodeInputs->inputLengths = ITensor::slice(inputLengths, 0, localBatchSize);
}
decodeInputs->draftLogits = externalDraftTokenParams->draftLogits;
decodeInputs->draftProbs = externalDraftTokenParams->draftProbs;
decodeInputs->targetProbs = externalDraftTokenParams->targetProbs;
decodeInputs->numDraftTokens = externalDraftTokenParams->numDraftTokens;
decodeInputs->draftTokenIds = externalDraftTokenParams->draftTokenIds;
decodeInputs->constantThreshold = externalDraftTokenParams->constantThreshold;
decodeInputs->useRandomAcceptanceThreshold = externalDraftTokenParams->useRandomAcceptanceThreshold;
decodeInputs->step = externalDraftTokenParams->step;
decodeInputs->useDraftLogits = externalDraftTokenParams->useDraftLogits;
preparedInputs = decodeInputs;
preparedOutputs = baseOutputs;
}
else
{
TLLM_CHECK_WITH_INFO(false,
"Decoding mode is none of the supported {TopK, TopP, TopKTopP, BeamSearch, Medusa, Lookahead, "
"ExplicitDraftTokens}");
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return {preparedOutputs, preparedInputs};
}
template class DecodingLayer<float>;
template class DecodingLayer<half>;
} // namespace tensorrt_llm::layers