TensorRT-LLMs/cpp/tensorrt_llm/layers/topPSamplingLayer.cpp
Kaiyu Xie 8681b3a4c0
open source 4dbf696ae9b74a26829d120b67ab8443d70c8e58 (#2297)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvanesh.sridharan@sprinklr.com>
Co-authored-by: Qingquan Song <ustcsqq@gmail.com>
2024-10-08 12:19:19 +02:00

320 lines
14 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "topPSamplingLayer.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
#include "tensorrt_llm/layers/defaultDecodingParams.h"
#include "tensorrt_llm/layers/layerUtils.h"
#include <algorithm>
#include <cfloat>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm::layers
{
template <typename T>
TopPSamplingLayer<T>::TopPSamplingLayer(DecoderDomain const& decoderDomain,
std::shared_ptr<BufferManager> bufferManager, bool isDeterministic, bool isAirTopP)
: BaseLayer(decoderDomain, bufferManager)
, mIsDeterministic(isDeterministic)
, mIsAirTopP(isAirTopP)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const deviceId = getDevice();
TLLM_CUDA_CHECK(cudaGetDeviceProperties(&mDeviceProp, deviceId));
allocateBuffer(mDecoderDomain.getBatchSize());
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopPSamplingLayer<T>::allocateBuffer(SizeType32 batchSize)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (!mIsAirTopP)
{
mWorkspaceSize = getTopPWorkspaceSize<T>(batchSize, mDecoderDomain.getVocabSizePadded());
}
else
{
mWorkspaceSize = getAirTopPWorkspaceSize<T>(batchSize, mDecoderDomain.getVocabSizePadded(), mIsDeterministic);
}
auto const batchSizeShape = ITensor::makeShape({batchSize});
mRuntimeTopKDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<SizeType32>::value);
mRuntimeTopPDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<float>::value);
mInitialTopPDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<float>::value);
mTopPDecayDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<float>::value);
mTopPMinDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<float>::value);
mTopPResetIdsDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<TokenIdType>::value);
mSkipDecodeDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<bool>::value);
mSkipDecodeHost = mBufferManager->pinnedPool(batchSizeShape, TRTDataType<bool>::value);
auto skipDecodeHostRange = BufferRange<bool>(*mSkipDecodeHost);
std::fill(skipDecodeHostRange.begin(), skipDecodeHostRange.end(), true);
mSetupWorkspaceSize = std::max({mRuntimeTopKDevice->getSizeInBytes(), mRuntimeTopPDevice->getSizeInBytes(),
mInitialTopPDevice->getSizeInBytes(), mTopPDecayDevice->getSizeInBytes(), mTopPMinDevice->getSizeInBytes(),
mTopPResetIdsDevice->getSizeInBytes(), mSkipDecodeDevice->getSizeInBytes()});
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopPSamplingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, TensorConstPtr batchSlots,
std::shared_ptr<BaseSetupParams> const& baseSetupParams,
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto setupParams = std::dynamic_pointer_cast<SamplingSetupParams>(baseSetupParams);
auto const defaultTopK = DefaultDecodingParams::getTopK();
auto runtimeTopK = setupParams->runtimeTopK.value_or(std::vector<SizeType32>(batchSize, defaultTopK));
auto runtimeTopP = setupParams->runtimeTopP.value_or(std::vector<float>{});
auto const runtimeTopKSize = runtimeTopK.size();
auto const runtimeTopPSize = runtimeTopP.size();
auto const defaultTopPDecay = DefaultDecodingParams::getTopPDecay();
auto decayVec = setupParams->topPDecay.value_or(std::vector<float>(batchSize, defaultTopPDecay));
auto const defaultTopPMin = DefaultDecodingParams::getTopPMin(); // prevent TopP becoming 0.0
auto topPMinVec = setupParams->topPMin.value_or(std::vector<float>(batchSize, defaultTopPMin));
auto const defaultTopPResetId = DefaultDecodingParams::getTopPResetId();
auto topPResetIdsVec = setupParams->topPResetIds.value_or(std::vector<TokenIdType>(batchSize, defaultTopPResetId));
auto const* batchSlotsPtr = bufferCastOrNull<SizeType32>(batchSlots);
auto* skipDecodeHostPtr = bufferCastOrNull<bool>(mSkipDecodeHost);
if (runtimeTopPSize == 0)
{
for (SizeType32 bi = 0; bi < batchSize; ++bi)
{
auto const bid = batchSlotsPtr[bi];
skipDecodeHostPtr[bid] = true;
}
auto const batchSize = mDecoderDomain.getBatchSize();
auto skipDecodeHostSlice = IBuffer::slice(mSkipDecodeHost, 0, batchSize);
mBufferManager->copy(*skipDecodeHostSlice, *mSkipDecodeDevice);
return;
}
for (auto& topK : runtimeTopK)
{
if (topK < 0 || topK > TOP_K_MAX)
{
TLLM_LOG_WARNING(
"TopK (%d) is larger than max supported number (%d). Clip to max supported number.", topK, TOP_K_MAX);
topK = std::clamp(topK, 0, static_cast<SizeType32>(TOP_K_MAX));
}
}
for (auto& topP : runtimeTopP)
{
if (topP < 0.f || topP > 1.0f)
{
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
topP = std::clamp(topP, 0.f, 1.f);
}
}
for (auto& decay : decayVec)
{
if (decay <= 0.f || decay > 1.0f)
{
TLLM_LOG_WARNING(
"Decay (%f) is out of range ((0.0, 1.0f]). Change to default (%f).", decay, defaultTopPDecay);
decay = defaultTopPDecay;
}
}
for (auto& topPMin : topPMinVec)
{
if (topPMin <= 0.f || topPMin > 1.0f)
{
TLLM_LOG_WARNING(
"TopP min (%f) is out of range ([0.0, 1.0f]). Change to default (%f).", topPMin, defaultTopPMin);
topPMin = defaultTopPMin;
}
}
auto const topK = runtimeTopK.at(0);
auto const topP = runtimeTopP.at(0);
auto* setupWorkspaceDevicePtr = workspace->getWorkspaceDevicePtrAs<SizeType32>();
auto* setupWorkspaceDeviceAsFloatPtr = reinterpret_cast<float*>(setupWorkspaceDevicePtr);
auto* runtimeTopKDevicePtr = bufferCastOrNull<SizeType32>(mRuntimeTopKDevice);
auto const* batchSlotsDevicePtr = workspace->getDeviceBatchSlotsPtr();
if (runtimeTopKSize > 1)
{
TLLM_CHECK_WITH_INFO(static_cast<SizeType32>(runtimeTopK.size()) == batchSize,
fmtstr("runtimeTopK.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopK.size(), batchSize));
DecodingLayerWorkspace::copyToWorkspace(*mBufferManager, runtimeTopK, workspace->getWorkspaceDeviceBuffer());
invokeScatterDecodingParams(
setupWorkspaceDevicePtr, runtimeTopKDevicePtr, batchSlotsDevicePtr, batchSize, getStream());
}
auto* runtimeTopPDevicePtr = bufferCast<float>(*mRuntimeTopPDevice);
if (runtimeTopPSize > 1)
{
TLLM_CHECK_WITH_INFO(static_cast<SizeType32>(runtimeTopP.size()) == batchSize,
fmtstr("runtimeTopP.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopP.size(), batchSize));
DecodingLayerWorkspace::copyToWorkspace(*mBufferManager, runtimeTopP, workspace->getWorkspaceDeviceBuffer());
invokeScatterDecodingParams(
setupWorkspaceDeviceAsFloatPtr, runtimeTopPDevicePtr, batchSlotsDevicePtr, batchSize, getStream());
}
auto fillBuffers = [this, batchSize, batchSlotsDevicePtr](
std::string const& name, auto const& vector, auto deviceTmpBuffer, auto deviceBuffer)
{
TLLM_CHECK_WITH_INFO(static_cast<SizeType32>(vector.size()) == batchSize,
fmtstr("%s.size() (%lu) == batchSize (%d) is not satisfied!", name.c_str(), vector.size(), batchSize));
cudaAutoCpy(deviceTmpBuffer, vector.data(), batchSize, getStream());
invokeScatterDecodingParams(deviceTmpBuffer, deviceBuffer, batchSlotsDevicePtr, batchSize, getStream());
};
auto* topPDecayDevicePtr = bufferCastOrNull<float>(mTopPDecayDevice);
fillBuffers("topPDecay", decayVec, setupWorkspaceDeviceAsFloatPtr, topPDecayDevicePtr);
auto* topPMinDevicePtr = bufferCastOrNull<float>(mTopPMinDevice);
fillBuffers("topPMin", topPMinVec, setupWorkspaceDeviceAsFloatPtr, topPMinDevicePtr);
auto* topPRestIdsDevicePtr = bufferCastOrNull<SizeType32>(mTopPResetIdsDevice);
fillBuffers("topPResetIds", topPResetIdsVec, setupWorkspaceDevicePtr, topPRestIdsDevicePtr);
auto* skipDecodeDevicePtr = bufferCast<bool>(*mSkipDecodeDevice);
auto* initialTopPDevicePtr = bufferCast<float>(*mInitialTopPDevice);
invokeSetTopPRuntimeArgs(batchSize, topK, runtimeTopKDevicePtr, runtimeTopKSize, topP, runtimeTopPDevicePtr,
runtimeTopPSize, skipDecodeDevicePtr, batchSlotsDevicePtr, initialTopPDevicePtr, getStream());
auto const skipHostDecodeDeviceSlice = ITensor::slice(mSkipDecodeDevice, 0, mDecoderDomain.getBatchSize());
auto skipDecodeHostSlice = ITensor::slice(mSkipDecodeHost, 0, mDecoderDomain.getBatchSize());
mBufferManager->copy(*skipHostDecodeDeviceSlice, *skipDecodeHostSlice);
if (mIsAirTopP)
{
auto smCnt = mDeviceProp.multiProcessorCount;
if (smCnt <= 0)
{
auto const deviceId = getDevice();
cudaDeviceProp prop{};
TLLM_CUDA_CHECK(cudaGetDeviceProperties(&prop, deviceId));
smCnt = prop.multiProcessorCount;
}
mAirTopPBlockNum
= calcAirTopPBlockNum<T>(batchSize, mDecoderDomain.getVocabSizePadded(), smCnt, mIsDeterministic);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopPSamplingLayer<T>::forwardAsync(std::shared_ptr<BaseDecodingOutputs> const& outputs,
std::shared_ptr<BaseDecodingInputs> const& baseInputs,
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto inputs = std::dynamic_pointer_cast<SamplingInputs>(baseInputs);
auto const batchSize = inputs->logits.value()->getDimension<0>();
auto* skipDecodeHostPtr = bufferCastOrNull<bool>(mSkipDecodeHost);
auto const skip = allOfBatchSlots(bufferCast<SizeType32>(*inputs->batchSlots), skipDecodeHostPtr, batchSize, true);
if (skip)
{
return;
}
// Probabilities must be already computed instead of logits
auto probs = bufferCastOrNull<T>(inputs->logits);
auto const* endIds = bufferCastOrNull<TokenIdType>(inputs->endIds);
auto const* finishedInput = (inputs->finished) ? reinterpret_cast<FinishedState const*>(
bufferCastOrNull<FinishedState::UnderlyingType>(inputs->finished.value()))
: nullptr;
auto* finishedOutput = (outputs->finished)
? reinterpret_cast<FinishedState*>(bufferCastOrNull<FinishedState::UnderlyingType>(outputs->finished.value()))
: nullptr;
auto* cumLogProbs = bufferCastOrNull<float>(outputs->cumLogProbs);
auto* outputLogProbs = bufferCastOrNull<float>(outputs->outputLogProbsTiled);
auto* sequenceLength = bufferCastOrNull<SizeType32>(outputs->sequenceLength);
TopPSamplingKernelParams<T> params{};
params.probs = probs;
params.outputIdsPtrs = bufferCastOrNull<TokenIdType*>(outputs->outputIdsPtr);
params.workspace = workspace->getRawWorkspaceDevicePtr();
params.topPs = bufferCastOrNull<float>(mRuntimeTopPDevice);
params.sequenceLength = sequenceLength;
params.endIds = endIds;
params.batchSlots = workspace->getDeviceBatchSlotsPtr();
params.finishedInput = finishedInput;
params.finishedOutput = finishedOutput;
params.skipDecode = bufferCastOrNull<bool>(mSkipDecodeDevice);
params.cumLogProbs = cumLogProbs;
params.outputLogProbs = outputLogProbs;
params.curandState = inputs->curandStates;
params.batchSize = batchSize;
params.maxBatchSize = mDecoderDomain.getBatchSize();
params.vocabSizePadded = mDecoderDomain.getVocabSizePadded();
if (!mIsAirTopP)
{
invokeBatchTopPSampling<T>(params, getStream());
}
else
{
params.blockNum = mAirTopPBlockNum;
params.isDeterministic = mIsDeterministic;
invokeBatchAirTopPSampling<T>(params, getStream());
}
sync_check_cuda_error();
auto* runtimeTopPDevicePtr = bufferCastOrNull<float>(mRuntimeTopPDevice);
auto* initialTopPDevicePtr = bufferCastOrNull<float>(mInitialTopPDevice);
auto* topPDecayDevicePtr = bufferCastOrNull<float>(mTopPDecayDevice);
auto* topPMinDevicePtr = bufferCastOrNull<float>(mTopPMinDevice);
auto* topPResetIdsDevice = bufferCastOrNull<TokenIdType>(mTopPResetIdsDevice);
auto* outputIdsPtr = bufferCastOrNull<TokenIdType const*>(outputs->outputIdsPtr);
invokeComputeToppDecay(runtimeTopPDevicePtr, initialTopPDevicePtr, outputIdsPtr, topPDecayDevicePtr,
topPMinDevicePtr, topPResetIdsDevice, sequenceLength, workspace->getDeviceBatchSlotsPtr(), batchSize,
getStream());
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
size_t TopPSamplingLayer<T>::getWorkspaceSize() const noexcept
{
return std::max(mSetupWorkspaceSize, mWorkspaceSize);
}
template class TopPSamplingLayer<float>;
template class TopPSamplingLayer<half>;
} // namespace tensorrt_llm::layers