TensorRT-LLMs/cpp/tensorrt_llm/runtime/gptDecoderBatched.cpp
Kaiyu Xie 8681b3a4c0
open source 4dbf696ae9b74a26829d120b67ab8443d70c8e58 (#2297)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvanesh.sridharan@sprinklr.com>
Co-authored-by: Qingquan Song <ustcsqq@gmail.com>
2024-10-08 12:19:19 +02:00

1213 lines
52 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/gptDecoderBatched.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/kernels/decodingKernels.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaEvent.h"
#include "tensorrt_llm/runtime/memoryCounters.h"
#include "tensorrt_llm/runtime/runtimeBuffers.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
#include <algorithm>
#include <cassert>
#include <memory>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
namespace tk = tensorrt_llm::kernels;
namespace
{
SamplingConfig extractSamplingConfig(SamplingConfig const& batchSamplingConfig, SizeType32 batchIdx)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
SamplingConfig samplingConfig{batchSamplingConfig.beamWidth};
auto extractOptional = [&batchIdx](auto& single, auto const& batch)
{
using T = typename std::remove_reference_t<decltype(batch)>::value_type;
if (batch)
{
if (batch->size() > 1)
single.emplace(T{batch->at(batchIdx)});
else
single.emplace(T{batch->at(0)});
}
};
extractOptional(samplingConfig.temperature, batchSamplingConfig.temperature);
extractOptional(samplingConfig.minLength, batchSamplingConfig.minLength);
extractOptional(samplingConfig.repetitionPenalty, batchSamplingConfig.repetitionPenalty);
extractOptional(samplingConfig.presencePenalty, batchSamplingConfig.presencePenalty);
extractOptional(samplingConfig.frequencyPenalty, batchSamplingConfig.frequencyPenalty);
extractOptional(samplingConfig.noRepeatNgramSize, batchSamplingConfig.noRepeatNgramSize);
// sampling layers
extractOptional(samplingConfig.topK, batchSamplingConfig.topK);
extractOptional(samplingConfig.topP, batchSamplingConfig.topP);
extractOptional(samplingConfig.randomSeed, batchSamplingConfig.randomSeed);
extractOptional(samplingConfig.topPDecay, batchSamplingConfig.topPDecay);
extractOptional(samplingConfig.topPMin, batchSamplingConfig.topPMin);
extractOptional(samplingConfig.topPResetIds, batchSamplingConfig.topPResetIds);
// beam search layer
extractOptional(samplingConfig.beamSearchDiversityRate, batchSamplingConfig.beamSearchDiversityRate);
extractOptional(samplingConfig.lengthPenalty, batchSamplingConfig.lengthPenalty);
extractOptional(samplingConfig.earlyStopping, batchSamplingConfig.earlyStopping);
samplingConfig.normalizeLogProbs = batchSamplingConfig.normalizeLogProbs;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return samplingConfig;
}
} // namespace
GptDecoderBatched::GptDecoderBatched(std::size_t vocabSize, std::size_t vocabSizePadded,
GptDecoderBatched::CudaStreamPtr stream, SpeculativeDecodingMode const& speculativeDecodingMode,
nvinfer1::DataType dtype)
: mVocabSize{vocabSize}
, mVocabSizePadded{vocabSizePadded}
, mRuntimeStream{std::move(stream)}
, mBufferManager{mRuntimeStream}
, mSpeculativeDecodingMode{speculativeDecodingMode}
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto constexpr nvTokenIdType = TRTDataType<TokenIdType>::value;
auto constexpr nvSizeType = TRTDataType<SizeType32>::value;
auto constexpr nvFloatType = TRTDataType<float>::value;
auto& dInput = mJointDecodingInput;
{ // prevent reusing these vars after std::move
auto dummyLogits = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType);
auto endIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType);
auto batchSlots = mBufferManager.emptyTensor(MemoryType::kPINNED, nvSizeType);
dInput = std::make_unique<DecodingInput>(
0, 0, 0, 0, std::move(dummyLogits), std::move(endIds), std::move(batchSlots));
}
dInput->sequenceLimitLength = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType);
dInput->lengths = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType);
auto& dOutput = mJointDecodingOutput;
{ // prevent reusing these vars after std::move
auto outputIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType);
auto gatheredOutputIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType);
dOutput = std::make_unique<DecodingOutput>(std::move(outputIds), std::move(gatheredOutputIds));
}
dOutput->newTokensSteps = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType);
dOutput->parentIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType);
mFinishedSteps
= mBufferManager.emptyTensor(MemoryType::kGPU, TRTDataType<tk::FinishedState::UnderlyingType>::value);
mBatchSlotsSetup = mBufferManager.emptyTensor(MemoryType::kPINNEDPOOL, nvSizeType);
mBatchSlotsDecoder = mBufferManager.emptyTensor(MemoryType::kPINNEDPOOL, nvSizeType);
// use batchSize many entries instead of the usual 1
dOutput->finishedSum = mBufferManager.emptyTensor(MemoryType::kPINNEDPOOL, nvSizeType);
mFinishedSum = BufferManager::pinned(ITensor::makeShape({1}), nvSizeType);
// we don't need dOutput->lengths because lengths are passed from outside
dOutput->cumLogProbs = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType);
dOutput->logProbs = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType);
dOutput->beamHypotheses.empty(mBufferManager);
dOutput->finishReasons
= mBufferManager.emptyTensor(MemoryType::kGPU, TRTDataType<tk::FinishedState::UnderlyingType>::value);
dOutput->logProbsTiled = mBufferManager.emptyTensor(MemoryType::kGPU, TRTDataType<float>::value);
dInput->stopWordsPtrs = mBufferManager.emptyTensor(MemoryType::kPINNEDPOOL, TRTDataType<int32_t*>::value);
dInput->stopWordsLens = mBufferManager.emptyTensor(MemoryType::kPINNEDPOOL, nvSizeType);
dInput->badWordsPtrs = mBufferManager.emptyTensor(MemoryType::kPINNEDPOOL, TRTDataType<int32_t*>::value);
dInput->badWordsLens = mBufferManager.emptyTensor(MemoryType::kPINNEDPOOL, nvSizeType);
dInput->embeddingBias = mBufferManager.emptyTensor(MemoryType::kGPU, dtype);
int device;
cudaGetDevice(&device);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, device);
mNumSMs = deviceProp.multiProcessorCount;
if (!mSpeculativeDecodingMode.isNone())
{
allocateSpeculativeDecodingBuffers(dtype);
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::allocateSpeculativeDecodingBuffers(nvinfer1::DataType dtype)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto constexpr nvSizeType = TRTDataType<SizeType32>::value;
auto& dInput = mJointDecodingInput;
auto& dOutput = mJointDecodingOutput;
if (mSpeculativeDecodingMode.isMedusa())
{
DecodingInput::MedusaInputs medusaInputs;
medusaInputs.medusaPaths = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType);
medusaInputs.medusaTreeIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType);
medusaInputs.medusaCurTokensPerStep = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType);
medusaInputs.medusaTargetTokensPerStep = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType);
dInput->medusaInputs = medusaInputs;
}
DecodingOutput::SpeculativeDecodingOutputs speculativeDecodingOutputs;
if (mSpeculativeDecodingMode.predictsDraftTokens())
{
speculativeDecodingOutputs.nextDraftTokens
= mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
if (mSpeculativeDecodingMode.variableDraftLength())
{
speculativeDecodingOutputs.nextDraftTokensLen
= mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
speculativeDecodingOutputs.prevDraftTokensLen
= mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
}
}
if (mSpeculativeDecodingMode.isLookaheadDecoding())
{
dInput->lookaheadInputs = DecodingInput::LookaheadInputs();
}
if (mSpeculativeDecodingMode.needsKVCacheRewind())
{
speculativeDecodingOutputs.acceptedTokensLen
= mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
speculativeDecodingOutputs.acceptedLengthsCumSum
= mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
speculativeDecodingOutputs.pathsOffsets
= mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
}
dOutput->speculativeDecodingOutputs = speculativeDecodingOutputs;
if (mSpeculativeDecodingMode.isDraftTokensExternal())
{
DecodingInput::ExternalDraftTokensInputs externalDraftTokensInputs;
externalDraftTokensInputs.draftLogits = mBufferManager.emptyTensor(MemoryType::kGPU, dtype);
externalDraftTokensInputs.draftProbs = mBufferManager.emptyTensor(MemoryType::kGPU, dtype);
externalDraftTokensInputs.targetProbs = mBufferManager.emptyTensor(MemoryType::kGPU, dtype);
externalDraftTokensInputs.numDraftTokens = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType);
externalDraftTokensInputs.useDraftLogits
= mBufferManager.emptyTensor(MemoryType::kGPU, TRTDataType<bool>::value);
externalDraftTokensInputs.draftTokenIds
= mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
dInput->externalDraftTokensInputs = externalDraftTokensInputs;
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::setupExplicitDraftTokens(ExplicitDraftTokensBuffers::Inputs explicitDraftTokensBuffers)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(mSpeculativeDecodingMode.isExplicitDraftTokens());
mJointDecodingOutput->explicitDraftTokensBuffers = std::move(explicitDraftTokensBuffers);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::setupLookahead(LookaheadDecodingBuffers lookaheadDecodingBuffers)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(mSpeculativeDecodingMode.isLookaheadDecoding());
mJointDecodingOutput->lookaheadOutputs = std::move(lookaheadDecodingBuffers);
mJointDecodingInput->lookaheadInputs->tokensPerStep = mJointDecodingOutput->lookaheadOutputs->generationLengths;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::setup(executor::DecodingMode const& mode, SizeType32 maxBatchSize, SizeType32 maxBeamWidth,
SizeType32 maxAttentionWindow, SizeType32 sinkTokenLength, SizeType32 maxSequenceLength,
SizeType32 maxTokensPerEngineStep, nvinfer1::DataType dtype, ModelConfig const& modelConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(maxBatchSize > 0);
TLLM_CHECK(maxBeamWidth > 0);
TLLM_CHECK(maxTokensPerEngineStep > 0);
TLLM_CHECK(maxSequenceLength > 0);
mActualBatchSize = maxBatchSize;
mMaxSequenceLength = maxSequenceLength;
mMaxAttentionWindow = maxAttentionWindow;
mSinkTokenLength = sinkTokenLength;
mMaxDecodingEngineTokens = maxTokensPerEngineStep;
mDecodingMode = mode;
TLLM_CHECK_WITH_INFO((mMaxDecodingEngineTokens == 1 && mSpeculativeDecodingMode.isNone())
|| (mMaxDecodingEngineTokens > 1 && !mSpeculativeDecodingMode.isNone()),
"Max tokens per engine step must be equal to 1 when no speculative decoding is configured, "
"or > 1 for any speculative decoding mode");
auto const maxBatchSizeShape = ITensor::makeShape({maxBatchSize});
auto const maxBatchSizeXmaxBeamWidth = ITensor::makeShape({maxBatchSize, maxBeamWidth});
auto const maxTokensPerStepXmaxBatchSizeXmaxBeamWidth
= ITensor::makeShape({maxTokensPerEngineStep, maxBatchSize, maxBeamWidth});
auto const maxBatchSizeXmaxTokensPerStep = ITensor::makeShape({maxBatchSize, maxTokensPerEngineStep});
auto const jointOutputIdsShape = ITensor::makeShape({maxBatchSize, maxBeamWidth, maxSequenceLength});
auto& dInput = *mJointDecodingInput;
dInput.maxLength = mMaxSequenceLength;
dInput.maxAttentionWindow = mMaxAttentionWindow;
dInput.sinkTokenLength = mSinkTokenLength;
dInput.stopWordsLists.resize(maxBatchSize);
dInput.badWordsLists.resize(maxBatchSize);
const_cast<ITensor&>(*dInput.endIds).reshape(maxBatchSizeShape);
const_cast<ITensor&>(*dInput.batchSlots).reshape(maxBatchSizeShape);
auto& sequenceLimitLength = const_cast<ITensor&>(*dInput.sequenceLimitLength);
sequenceLimitLength.reshape(maxBatchSizeShape);
kernels::invokeFill(sequenceLimitLength, mMaxSequenceLength, *mRuntimeStream);
auto& inputLengths = const_cast<ITensor&>(*dInput.lengths);
inputLengths.reshape(maxBatchSizeXmaxBeamWidth);
mBufferManager.setZero(inputLengths);
auto& dOutput = *mJointDecodingOutput;
dOutput.ids->reshape(jointOutputIdsShape);
if (maxBeamWidth > 1)
{
dOutput.gatheredIds->reshape(jointOutputIdsShape);
mOutputBeamHypotheses = std::make_shared<DecodingOutput::BeamHypotheses>();
mOutputBeamHypotheses->empty(mBufferManager);
mOutputBeamHypotheses->reshape(1, maxBeamWidth, mMaxSequenceLength);
mCumLogProbsTmp = mBufferManager.gpu(ITensor::makeShape({1, maxBeamWidth}), nvinfer1::DataType::kFLOAT);
}
else
{
dOutput.gatheredIds = dOutput.ids;
}
mBufferManager.setZero(*dOutput.newTokensSteps);
mFinishedSteps->reshape(maxTokensPerStepXmaxBatchSizeXmaxBeamWidth);
mBufferManager.setZero(*mFinishedSteps);
dOutput.finishReasons->reshape(maxBatchSizeXmaxBeamWidth);
mBufferManager.setZero(*dOutput.finishReasons);
mBatchSlotsSetup->reshape(ITensor::makeShape({maxBatchSize}));
mBatchSlotsDecoder->reshape(ITensor::makeShape({maxTokensPerEngineStep, maxBatchSize}));
if (mSpeculativeDecodingMode.isDraftTokensExternal())
{
dInput.externalDraftTokensInputs->draftProbs->reshape(ITensor::makeShape(
{maxBatchSize, maxTokensPerEngineStep, maxBeamWidth, static_cast<SizeType32>(mVocabSizePadded)}));
dInput.externalDraftTokensInputs->targetProbs->reshape(ITensor::makeShape(
{maxBatchSize, maxTokensPerEngineStep, maxBeamWidth, static_cast<SizeType32>(mVocabSizePadded)}));
dInput.externalDraftTokensInputs->draftLogits->reshape(
ITensor::makeShape({maxBatchSize, maxTokensPerEngineStep, static_cast<SizeType32>(mVocabSizePadded)}));
dInput.externalDraftTokensInputs->draftTokenIds->reshape(maxBatchSizeXmaxTokensPerStep);
dInput.externalDraftTokensInputs->numDraftTokens->reshape(ITensor::makeShape({maxBatchSize, 1}));
dInput.externalDraftTokensInputs->useDraftLogits->reshape(ITensor::makeShape({maxBatchSize, 1}));
}
dOutput.parentIds->reshape(jointOutputIdsShape);
// use batchSize many entries instead of the usual 1
dOutput.finishedSum->reshape(maxBatchSizeShape);
mBufferManager.setZero(*dOutput.finishedSum);
dOutput.newTokensSteps->reshape(ITensor::makeShape({maxTokensPerEngineStep, maxBatchSize, maxBeamWidth}));
dOutput.cumLogProbs->reshape(maxBatchSizeXmaxBeamWidth);
mBufferManager.setZero(*dOutput.cumLogProbs);
dOutput.logProbs->reshape(jointOutputIdsShape);
mBufferManager.setZero(*dOutput.logProbs);
if (maxBeamWidth > 1)
{
dOutput.beamHypotheses.reshape(maxBatchSize, maxBeamWidth, mMaxSequenceLength);
}
dOutput.logProbsTiled->reshape(ITensor::makeShape({maxSequenceLength, maxBatchSize, maxBeamWidth}));
mBufferManager.setZero(*dOutput.logProbsTiled);
const_cast<ITensor&>(*dInput.embeddingBias)
.reshape(ITensor::makeShape({maxBatchSize, static_cast<SizeType32>(mVocabSizePadded)}));
const_cast<ITensor&>(*dInput.badWordsPtrs).reshape(ITensor::makeShape({maxBatchSize}));
const_cast<ITensor&>(*dInput.badWordsLens).reshape(ITensor::makeShape({maxBatchSize}));
const_cast<ITensor&>(*dInput.stopWordsPtrs).reshape(ITensor::makeShape({maxBatchSize}));
const_cast<ITensor&>(*dInput.stopWordsLens).reshape(ITensor::makeShape({maxBatchSize}));
std::shared_ptr<SpeculativeDecodingModule const> speculativeDecodingModulePtr = nullptr;
if (mSpeculativeDecodingMode.predictsDraftTokens())
{
speculativeDecodingModulePtr = modelConfig.getSpeculativeDecodingModulePtr();
setupSpeculativeDecoding(modelConfig);
}
else
{
mMaxDecodingDecoderTokens = 1;
}
auto const device = mRuntimeStream->getDevice();
mDecoderStream = std::make_shared<CudaStream>();
TLLM_CHECK(mDecoderStream->getDevice() == device);
mDecoder = IGptDecoder::create(mode, dtype, maxBatchSize, maxBeamWidth, mVocabSize, mVocabSizePadded,
mMaxSequenceLength, mDecoderStream, speculativeDecodingModulePtr);
mNbSteps.clear();
mNbSteps.resize(maxBatchSize, 0);
mFinished.clear();
mFinished.resize(maxBatchSize, true);
mMaxNewTokens.clear();
mMaxNewTokens.resize(maxBatchSize, 0);
mBeamWidths.clear();
mBeamWidths.resize(maxBatchSize, 0);
mNumDecodingEngineTokens.clear();
mNumDecodingEngineTokens.resize(maxBatchSize, 0);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::setupSpeculativeDecoding(ModelConfig const& modelConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto& dInput = *mJointDecodingInput;
auto& dOutput = *mJointDecodingOutput;
auto const speculativeDecodingModule = modelConfig.getSpeculativeDecodingModulePtr();
if (mSpeculativeDecodingMode.isMedusa())
{
auto& medusaPaths = const_cast<ITensor&>(*dInput.medusaInputs->medusaPaths);
medusaPaths.reshape(ITensor::makeShape({mActualBatchSize, speculativeDecodingModule->getMaxDecodingTokens(),
speculativeDecodingModule->getMaxPathLen()}));
mBufferManager.setMem(medusaPaths, -1);
auto& medusaTreeIds = const_cast<ITensor&>(*dInput.medusaInputs->medusaTreeIds);
medusaTreeIds.reshape(
ITensor::makeShape({mActualBatchSize, speculativeDecodingModule->getMaxDecodingDraftTokens()}));
mBufferManager.setZero(medusaTreeIds);
auto& curTokensPerStep = const_cast<ITensor&>(*dInput.medusaInputs->medusaCurTokensPerStep);
auto& targetTokensPerStep = const_cast<ITensor&>(*dInput.medusaInputs->medusaTargetTokensPerStep);
curTokensPerStep.reshape(ITensor::makeShape({mActualBatchSize}));
targetTokensPerStep.reshape(ITensor::makeShape({mActualBatchSize}));
mBufferManager.setZero(curTokensPerStep);
mBufferManager.setZero(targetTokensPerStep);
}
if (mSpeculativeDecodingMode.predictsDraftTokens())
{
dOutput.speculativeDecodingOutputs->nextDraftTokens->reshape(
ITensor::makeShape({mActualBatchSize, mMaxDecodingEngineTokens - 1}));
if (mSpeculativeDecodingMode.variableDraftLength())
{
dOutput.speculativeDecodingOutputs->nextDraftTokensLen->reshape(ITensor::makeShape({mActualBatchSize}));
dOutput.speculativeDecodingOutputs->prevDraftTokensLen->reshape(ITensor::makeShape({mActualBatchSize}));
}
}
if (mSpeculativeDecodingMode.needsKVCacheRewind())
{
dOutput.speculativeDecodingOutputs->acceptedTokensLen->reshape(ITensor::makeShape({mActualBatchSize}));
dOutput.speculativeDecodingOutputs->acceptedLengthsCumSum->reshape(ITensor::makeShape({mActualBatchSize + 1}));
dOutput.speculativeDecodingOutputs->pathsOffsets->reshape(
ITensor::makeShape({mActualBatchSize * speculativeDecodingModule->getMaxDraftPathLen()}));
}
mMaxDecodingDecoderTokens = mMaxDecodingEngineTokens;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::newRequest(
SizeType32 batchSlot, decoder_batch::Request const& request, SamplingConfig const& samplingConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(batchSlot >= 0);
auto const& jointOutputIdsShape = mJointDecodingOutput->ids->getShape();
auto const batchSize = jointOutputIdsShape.d[0];
TLLM_CHECK(0 <= batchSize && batchSlot < batchSize);
auto const maxBeamWidth = jointOutputIdsShape.d[1];
auto const beamWidth = samplingConfig.beamWidth;
TLLM_CHECK_WITH_INFO(beamWidth <= maxBeamWidth,
tc::fmtstr("Beam width (%d) must be smaller than maxBeamWidth (" FMT_DIM ") passed to decoder setup function.",
beamWidth, maxBeamWidth));
auto const& requestIds = request.ids;
auto const inputLength = request.inputLen;
auto const numDecodingEngineTokens = request.generatedTokensPerEngineStep;
auto const numDecodingDraftEngineTokens = numDecodingEngineTokens - 1;
auto const maxNewTokens
= request.maxNewTokens.value_or(mMaxSequenceLength - inputLength - numDecodingDraftEngineTokens);
TLLM_CHECK_WITH_INFO(inputLength + maxNewTokens + numDecodingDraftEngineTokens <= mMaxSequenceLength,
tc::fmtstr(
"Input length (%d) + max new tokens (%d) + draft tokens (%d) must be less than max sequence length (%d).",
inputLength, maxNewTokens, numDecodingDraftEngineTokens, mMaxSequenceLength));
TLLM_CHECK(requestIds->getDataType() == TRTDataType<TokenIdType>::value);
auto const endId = request.endId.value_or(-1);
auto const& stream = mDecoderStream;
BufferManager manager{stream};
// input
auto& dJointInput = *mJointDecodingInput;
TensorPtr endIdTensorPtr{ITensor::slice(constPointerCast(dJointInput.endIds), batchSlot, 1)};
kernels::invokeFill(*endIdTensorPtr, endId, *stream);
TensorPtr embeddingBiasSlice = ITensor::slice(constPointerCast(dJointInput.embeddingBias), batchSlot, 1);
if (request.embeddingBias)
{
TLLM_CHECK(request.embeddingBias->getShape().nbDims == 2);
TLLM_CHECK(request.embeddingBias->getShape().d[0] == 1);
TLLM_CHECK_WITH_INFO(request.embeddingBias->getShape().d[1] == static_cast<SizeType32>(mVocabSize),
"The embedding bias shape is not as expected. Expected last dimension to be same as vocab size: %lu.",
mVocabSize);
manager.copy(*request.embeddingBias, *embeddingBiasSlice);
}
else
{
manager.setZero(*embeddingBiasSlice);
}
auto setupWords = [](std::vector<runtime::ITensor::SharedPtr>& jointWordsLists, TensorPtr const& requestWordsList,
SharedConstPtr& jointWordsPtrs, SharedConstPtr& jointWordsLens, SizeType32& jointMaxWordsLen,
SizeType32 batchSlot)
{
if (requestWordsList)
{
auto const wordsLen = requestWordsList->getShape().d[1];
BufferRange<int32_t*>(*constPointerCast(jointWordsPtrs))[batchSlot]
= bufferCast<TokenIdType>(*requestWordsList);
bufferCast<SizeType32>(*constPointerCast(jointWordsLens))[batchSlot] = wordsLen;
// FIXME(nkorobov): this is monotonically growing size
jointMaxWordsLen = std::max(static_cast<SizeType32>(wordsLen), jointMaxWordsLen);
// NOTE(nkorobov): jointWordsList is not used in gptDecoder, but required to keep <name>WordsList's
// memory allocated
jointWordsLists[batchSlot] = requestWordsList;
}
else
{
bufferCast<SizeType32>(*constPointerCast(jointWordsLens))[batchSlot] = 0;
}
};
setupWords(dJointInput.stopWordsLists, request.stopWordsList, dJointInput.stopWordsPtrs, dJointInput.stopWordsLens,
dJointInput.maxStopWordsLen, batchSlot);
setupWords(dJointInput.badWordsLists, request.badWordsList, dJointInput.badWordsPtrs, dJointInput.badWordsLens,
dJointInput.maxBadWordsLen, batchSlot);
TensorPtr sequenceLimitLength{ITensor::slice(constPointerCast(dJointInput.sequenceLimitLength), batchSlot, 1)};
kernels::invokeFill(*sequenceLimitLength, inputLength + maxNewTokens, *stream);
TensorPtr inputLengths{ITensor::slice(constPointerCast(dJointInput.lengths), batchSlot, 1)};
kernels::invokeFill(*inputLengths, inputLength, *stream);
// output
auto& dJointOutput = *mJointDecodingOutput;
auto const outputIdsShape = ITensor::makeShape({1, beamWidth, mMaxSequenceLength});
auto finishedSum = ITensor::slice(dJointOutput.finishedSum, batchSlot, 1);
manager.setZero(*finishedSum);
for (SizeType32 ti = 0; ti < mMaxDecodingEngineTokens; ++ti)
{
TensorPtr newTokensStepView = ITensor::slice(dJointOutput.newTokensSteps, ti, 1);
newTokensStepView->squeeze(0);
auto newTokensVec = ITensor::slice(newTokensStepView, batchSlot, 1);
manager.setZero(*newTokensVec);
}
// FIXME(nkorobov): we call setZero mMaxDecodingEngineTokens times for only 1 element
for (SizeType32 ti = 0; ti < mMaxDecodingEngineTokens; ++ti)
{
TensorPtr finishedStepsView = ITensor::slice(mFinishedSteps, ti, 1);
finishedStepsView->squeeze(0);
TensorPtr finishedSteps = ITensor::slice(finishedStepsView, batchSlot, 1);
manager.setZero(*finishedSteps);
}
// cumLogProb is mandatory for beamWidth > 1
if ((samplingConfig.cumLogProbs.has_value() && samplingConfig.cumLogProbs->at(0)) || beamWidth > 1)
{
auto cumLogProbs = ITensor::slice(dJointOutput.cumLogProbs, batchSlot, 1);
manager.setZero(*cumLogProbs);
}
if (samplingConfig.outputLogProbs.has_value() && samplingConfig.outputLogProbs->at(0))
{
auto logProbs = ITensor::slice(dJointOutput.logProbs, batchSlot, 1);
manager.setZero(*logProbs);
}
if (beamWidth > 1)
{
TensorPtr cumLogProbs = ITensor::slice(dJointOutput.cumLogProbs, batchSlot, 1);
kernels::invokeFill(*IBuffer::slice(cumLogProbs, 1, beamWidth - 1), DecodingOutput::kNegativeInfinity, *stream);
auto parentIds = ITensor::slice(dJointOutput.parentIds, batchSlot, 1);
parentIds->reshape(outputIdsShape);
manager.setZero(*parentIds);
auto beamHypotheses = dJointOutput.beamHypotheses.slice(batchSlot, 1);
beamHypotheses.init(manager, endId);
}
// Speculative execution
if (numDecodingEngineTokens > 1)
{
TLLM_CHECK(beamWidth == 1);
newRequestSpeculativeDecoding(batchSlot, request, samplingConfig);
}
// remaining
mBeamWidths[batchSlot] = beamWidth;
mNbSteps[batchSlot] = 0;
mFinished[batchSlot] = false;
mMaxNewTokens[batchSlot] = maxNewTokens;
mNumDecodingEngineTokens[batchSlot] = numDecodingEngineTokens;
// copy the request ids into outputIds
auto const requestIdsShape = requestIds->getShape();
auto inputIdsView = ITensor::view(requestIds, ITensor::makeShape({1, requestIdsShape.d[0]}));
TensorPtr outputIds = ITensor::slice(dJointOutput.ids, batchSlot, 1);
auto outputIdsView = ITensor::view(outputIds, ITensor::makeShape({beamWidth, mMaxSequenceLength}));
kernels::invokeFill(*outputIdsView, endId, *stream);
kernels::tileTensor(*outputIdsView, *inputIdsView, beamWidth, *stream);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::newRequestSpeculativeDecoding(
SizeType32 batchIdx, decoder_batch::Request const& request, SamplingConfig const& samplingConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (mSpeculativeDecodingMode.predictsDraftTokens())
{
auto const& stream = mDecoderStream;
BufferManager manager{stream};
auto& dJointOutput = *mJointDecodingOutput;
TensorPtr nextDraftTokens
= ITensor::slice(dJointOutput.speculativeDecodingOutputs->nextDraftTokens, batchIdx, 1);
// FIXME(nkorobov): can we skip this?
manager.setZero(*nextDraftTokens);
if (mSpeculativeDecodingMode.variableDraftLength())
{
TensorPtr nextDraftTokensLen
= ITensor::slice(dJointOutput.speculativeDecodingOutputs->nextDraftTokensLen, batchIdx, 1);
manager.setZero(*nextDraftTokensLen);
}
}
if (mSpeculativeDecodingMode.isDraftTokensExternal())
{
newRequestDraftTokensExternal(batchIdx, request, samplingConfig);
}
else if (mSpeculativeDecodingMode.isMedusa())
{
newRequestMedusa(batchIdx, request);
}
else if (mSpeculativeDecodingMode.isLookaheadDecoding())
{
newRequestLookahead(batchIdx, request);
}
else if (mSpeculativeDecodingMode.isExplicitDraftTokens())
{
newRequestExplicitDraftTokens(batchIdx, request);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::newRequestDraftTokensExternal(
SizeType32 batchIdx, decoder_batch::Request const& request, SamplingConfig const& samplingConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const& stream = mDecoderStream;
BufferManager manager{stream};
auto& dJointInput = *mJointDecodingInput;
auto useDraftLogits = false;
auto const numDraftTokens = request.generatedTokensPerEngineStep - 1;
if (request.draftLogits.has_value())
{
TensorPtr draftLogitsView = ITensor::view(request.draftLogits.value());
useDraftLogits = true;
TensorPtr draftLogitsReqBatchSlice
= ITensor::slice(dJointInput.externalDraftTokensInputs->draftLogits, batchIdx, 1);
draftLogitsReqBatchSlice->squeeze(0);
TensorPtr draftLogitsReqTokensSlice = ITensor::slice(draftLogitsReqBatchSlice, 0, numDraftTokens);
manager.copy(*draftLogitsView, *draftLogitsReqTokensSlice);
}
auto useDraftLogitsView = ITensor::slice(dJointInput.externalDraftTokensInputs->useDraftLogits, batchIdx, 1);
kernels::invokeFill(*useDraftLogitsView, useDraftLogits, *stream);
TensorPtr draftTokensReqBatchSlice
= ITensor::slice(dJointInput.externalDraftTokensInputs->draftTokenIds, batchIdx, 1);
draftTokensReqBatchSlice->squeeze(0);
TensorPtr draftTokensReqTokensSlice = ITensor::slice(draftTokensReqBatchSlice, 0, numDraftTokens);
TensorPtr draftTokensView = ITensor::view(request.draftTokens, ITensor::makeShape({numDraftTokens}));
manager.copy(*draftTokensView, *draftTokensReqTokensSlice);
auto numDraftTokensView = ITensor::slice(dJointInput.externalDraftTokensInputs->numDraftTokens, batchIdx, 1);
kernels::invokeFill(*numDraftTokensView, numDraftTokens, *stream);
bool const useRandomAcceptanceThreshold = !samplingConfig.draftAcceptanceThreshold.has_value();
float const constantThreshold
= useRandomAcceptanceThreshold ? 0 : samplingConfig.draftAcceptanceThreshold.value()[0];
dJointInput.externalDraftTokensInputs->useRandomAcceptanceThreshold = useRandomAcceptanceThreshold;
dJointInput.externalDraftTokensInputs->constantThreshold = constantThreshold;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::newRequestMedusa(SizeType32 batchIdx, decoder_batch::Request const& request)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const& stream = mDecoderStream;
BufferManager manager{stream};
auto& dJointInput = *mJointDecodingInput;
TensorPtr curTokensPerStepSlice
= ITensor::slice(constPointerCast(dJointInput.medusaInputs->medusaCurTokensPerStep), batchIdx, 1);
// Context phase Medusa processes 1 token only, new value from targetTokensPerStep will be filled at the end
// of first decoder
kernels::invokeFill(*curTokensPerStepSlice, 1, *stream);
TensorPtr targetTokensPerStepSlice
= ITensor::slice(constPointerCast(dJointInput.medusaInputs->medusaTargetTokensPerStep), batchIdx, 1);
auto const generatedTokensPerEngineStep = request.generatedTokensPerEngineStep;
TLLM_CHECK_WITH_INFO(generatedTokensPerEngineStep <= mMaxDecodingEngineTokens,
"Tokens per step for (%d) is larger than maximum tokens per step (%d)", generatedTokensPerEngineStep,
mMaxDecodingEngineTokens);
kernels::invokeFill(*targetTokensPerStepSlice, generatedTokensPerEngineStep, *stream);
TensorPtr pathsSlice = ITensor::slice(constPointerCast(dJointInput.medusaInputs->medusaPaths), batchIdx, 1);
manager.copy(*request.medusaPaths, *pathsSlice);
TensorPtr treeIdsSlice = ITensor::slice(constPointerCast(dJointInput.medusaInputs->medusaTreeIds), batchIdx, 1);
manager.copy(*request.medusaTreeIds, *treeIdsSlice);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::newRequestLookahead(SizeType32 batchIdx, decoder_batch::Request const& request)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(mJointDecodingOutput->lookaheadOutputs);
auto& stream = mRuntimeStream;
// The first generation step only generate 1 token.
TensorPtr curTokensPerStepSlice
= ITensor::slice(constPointerCast(mJointDecodingInput->lookaheadInputs->tokensPerStep), batchIdx, 1);
kernels::invokeFill(*curTokensPerStepSlice, 1, *stream);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::newRequestExplicitDraftTokens(SizeType32 batchIdx, decoder_batch::Request const& request)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(mJointDecodingOutput->explicitDraftTokensBuffers);
auto& stream = mRuntimeStream;
TensorPtr positionIdsBaseSlice
= ITensor::slice(mJointDecodingOutput->explicitDraftTokensBuffers->positionIdsBase, batchIdx, 1);
kernels::invokeFill(*positionIdsBaseSlice, request.inputLen, *stream);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::setExplicitDraftTokensInputs(decoder_batch::Input const& input)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto explicitDraftTokensInputs = DecodingInput::ExplicitDraftTokensInputs();
TLLM_CHECK(input.explicitDraftTokensInputs.has_value());
TLLM_CHECK(input.explicitDraftTokensLastInputs.has_value());
explicitDraftTokensInputs.nextDraftTokens = input.explicitDraftTokensInputs->nextDraftTokens;
explicitDraftTokensInputs.nextFlatTokens = input.explicitDraftTokensInputs->nextFlatTokens;
explicitDraftTokensInputs.nextDraftIndices = input.explicitDraftTokensInputs->nextDraftIndices;
explicitDraftTokensInputs.nextDraftProbs = input.explicitDraftTokensInputs->nextDraftProbs;
explicitDraftTokensInputs.lastDraftTokens = input.explicitDraftTokensLastInputs->draftTokens;
explicitDraftTokensInputs.lastDraftIndices = input.explicitDraftTokensLastInputs->draftIndices;
explicitDraftTokensInputs.lastPositionIdsBase = input.explicitDraftTokensLastInputs->positionIdsBase;
explicitDraftTokensInputs.masks = input.explicitDraftTokensInputs->masks;
explicitDraftTokensInputs.packedPositionIds = input.explicitDraftTokensInputs->packedPositionIds;
explicitDraftTokensInputs.bestPathLengths = input.explicitDraftTokensInputs->bestPathLengths;
explicitDraftTokensInputs.bestPathIndices = input.explicitDraftTokensInputs->bestPathIndices;
explicitDraftTokensInputs.nextGenerationLengths = input.explicitDraftTokensInputs->nextGenerationLengths;
explicitDraftTokensInputs.lastGenerationLengths = input.explicitDraftTokensLastInputs->generationLengths;
explicitDraftTokensInputs.maxGenLengthDevice = input.explicitDraftTokensInputs->maxGenToken;
explicitDraftTokensInputs.seqSlots = input.seqSlots;
mJointDecodingInput->explicitDraftTokensInputs = explicitDraftTokensInputs;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::newRequests(std::vector<SizeType32> const& seqSlots,
std::vector<decoder_batch::Request> const& requests, std::vector<SamplingConfig> const& samplingConfigs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto batchSlotsPtr = bufferCast<SizeType32>(*mBatchSlotsSetup);
SizeType32 const localBatchSize = seqSlots.size();
for (SizeType32 bi = 0; bi < localBatchSize; ++bi)
{
newRequest(seqSlots[bi], requests[bi], samplingConfigs[bi]);
batchSlotsPtr[bi] = seqSlots[bi];
}
TensorPtr batchSlotsView = ITensor::slice(mBatchSlotsSetup, 0, localBatchSize);
auto samplingConfig = SamplingConfig(samplingConfigs);
mDecoder->setup(samplingConfig, localBatchSize, batchSlotsView, {*mJointDecodingOutput}, {requests});
auto const& stream = mDecoderStream;
CudaEvent event{};
stream->record(event);
mRuntimeStream->wait(event);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::forwardDispatch(
decoder_batch::Output& output, decoder_batch::Input const& input, ForwardType forwardType)
{
auto const maxDecodingEngineTokens
= *std::max_element(std::begin(mNumDecodingEngineTokens), std::end(mNumDecodingEngineTokens));
for (SizeType32 si = 0; si < maxDecodingEngineTokens; si += mMaxDecodingDecoderTokens)
{
forwardDecoder(si, output, input, forwardType);
}
}
GptDecoderBatched::DecoderFinishedEventPtr GptDecoderBatched::forwardAsync(
decoder_batch::Output& output, decoder_batch::Input const& input)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
forwardDispatch(output, input, ForwardType::kASYNC);
CudaEvent eventStop{};
mRuntimeStream->record(eventStop);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return std::make_unique<decoder_batch::DecoderFinishedEvent>(std::move(eventStop), input.active);
}
void GptDecoderBatched::forwardDecoder(
SizeType32 step, decoder_batch::Output& output, decoder_batch::Input const& input, ForwardType forwardType)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto eventStart = CudaEvent{};
mRuntimeStream->record(eventStart);
auto& allTargetLogits = input.logits;
auto const& jointOutputIdsShape = mJointDecodingOutput->ids->getShape();
auto const maxBeamWidth = jointOutputIdsShape.d[1];
auto constexpr singleRequest = 1;
TLLM_CHECK(static_cast<SizeType32>(output.sequenceLengths->getSize()) == mActualBatchSize * maxBeamWidth);
// TODO should remove this reshape and set shape to [batch_size, beam_width] outside
TensorPtr sequenceLengths
= ITensor::view(output.sequenceLengths, ITensor::makeShape({mActualBatchSize, maxBeamWidth}));
TLLM_CHECK(sequenceLengths);
auto batchSlotsDecoderPtr = maxBeamWidth > 1 && input.seqSlots ? bufferCast<SizeType32>(*input.seqSlots)
: bufferCast<SizeType32>(*mBatchSlotsDecoder);
auto& dInput = *mJointDecodingInput;
auto& dOutput = *mJointDecodingOutput;
auto& decoder = *mDecoder;
auto const& stream = mDecoderStream;
if (maxBeamWidth > 1)
{
dInput.cacheIndirection = input.cacheIndirection;
dOutput.cacheIndirection = output.cacheIndirection;
}
if (mSpeculativeDecodingMode.isExplicitDraftTokens())
{
setExplicitDraftTokensInputs(input);
}
bool const async = forwardType == ForwardType::kASYNC;
if (async)
{
stream->wait(eventStart.get());
}
SizeType32 localBatchDecoderIdx = 0;
for (SizeType32 bi = 0; bi < mActualBatchSize; ++bi)
{
if (mFinished[bi] || !input.active.at(bi) || step >= mNumDecodingEngineTokens[bi])
{
continue;
}
batchSlotsDecoderPtr[step * mActualBatchSize + localBatchDecoderIdx] = bi;
localBatchDecoderIdx++;
}
auto const maxDecodingEngineTokens
= *std::max_element(std::begin(mNumDecodingEngineTokens), std::end(mNumDecodingEngineTokens));
std::vector<SharedConstPtr> logitsVec;
for (SizeType32 bi = 0; bi < mActualBatchSize; ++bi)
{
if (mFinished[bi] || !input.active.at(bi) || step >= mNumDecodingEngineTokens[bi])
{
continue;
}
auto const& targetLogits = allTargetLogits[bi];
TensorPtr logitsSlice = ITensor::slice(targetLogits, step, singleRequest);
logitsVec.push_back(logitsSlice);
}
TensorPtr finishedStepsInput = ITensor::slice(mFinishedSteps, step, 1);
TensorPtr finishedStepsOutput = ITensor::slice(mFinishedSteps, std::min(maxDecodingEngineTokens - 1, step + 1), 1);
finishedStepsInput->squeeze(0);
finishedStepsOutput->squeeze(0);
TensorPtr newTokensStepView = ITensor::slice(dOutput.newTokensSteps, step, mMaxDecodingDecoderTokens);
dInput.logitsVec = logitsVec;
dInput.finishReasons = finishedStepsInput;
if (maxBeamWidth > 1 && input.seqSlots)
{
dInput.batchSlots = input.seqSlots;
}
else
{
TensorPtr batchSlotsDecoderSlice = ITensor::slice(mBatchSlotsDecoder, step, 1);
batchSlotsDecoderSlice->squeeze(0);
dInput.batchSlots = batchSlotsDecoderSlice;
}
dInput.batchSize = localBatchDecoderIdx;
if (mSpeculativeDecodingMode.isMedusa())
{
dInput.medusaInputs->medusaLogits = input.predictedDraftLogits;
}
if (mSpeculativeDecodingMode.isDraftTokensExternal())
{
dInput.externalDraftTokensInputs->step = step;
}
dOutput.newTokens = newTokensStepView;
dOutput.finishReasons = finishedStepsOutput;
dOutput.lengths = sequenceLengths;
if (localBatchDecoderIdx > 0)
{
if (forwardType == ForwardType::kASYNC)
{
decoder.forwardAsync(dOutput, dInput);
}
else if (forwardType == ForwardType::kSYNC)
{
decoder.forwardSync(dOutput, dInput);
}
else
{
TLLM_THROW("Unknown ForwardType");
}
}
for (SizeType32 bi = 0; bi < mActualBatchSize; ++bi)
{
if (mFinished[bi] || !input.active.at(bi) || step >= mNumDecodingEngineTokens[bi])
{
continue;
}
mNbSteps[bi] += 1;
mFinished[bi] = mNbSteps[bi] >= mMaxNewTokens[bi];
}
// If last iteration
if (async && step == maxDecodingEngineTokens - mMaxDecodingDecoderTokens)
{
CudaEvent event{};
stream->record(event);
mRuntimeStream->wait(event);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::updateFinished(decoder_batch::DecoderFinishedEvent const& decoderFinishEvent)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
for (std::int32_t i = 0; i < mActualBatchSize; ++i)
{
if (decoderFinishEvent.active[i] && !mFinished[i])
{
auto finishedSum = ITensor::slice(mJointDecodingOutput->finishedSum, i, 1);
mFinished[i] = mFinished[i]
// This condition requires the synchronization above
|| bufferCast<SizeType32>(*finishedSum)[0] == static_cast<SizeType32>(mBeamWidths[i]);
}
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::forwardSync(decoder_batch::DecoderFinishedEvent const& decoderFinishEvent)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
decoderFinishEvent.event.synchronize();
updateFinished(decoderFinishEvent);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::forwardSync(decoder_batch::DecoderFinishedEvent const& decoderFinishEvent,
decoder_batch::Output& output, decoder_batch::Input const& input)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
decoderFinishEvent.event.synchronize();
forwardDispatch(output, input, ForwardType::kSYNC);
updateFinished(decoderFinishEvent);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
// TODO call this at the end of forward if mFinished[i] changes from false to true?
CudaEvent GptDecoderBatched::postProcessRequest(
SizeType32 batchSlot, SamplingConfig const& samplingConfig, bool streaming) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto& stream = mRuntimeStream;
auto manager = BufferManager{stream};
auto& dJointInput = *mJointDecodingInput;
auto& dJointOutput = *mJointDecodingOutput;
auto slice = [batchSlot](auto& a, auto const& b)
{
if (b && b->getShape().d[0] > 0)
{
a = ITensor::slice(b, batchSlot, 1);
}
};
// Prepare a slice of dJointInput and dJointOutput for gatherTree
DecodingInput dInput{dJointInput};
slice(dInput.endIds, dJointInput.endIds);
slice(dInput.lengths, dJointInput.lengths);
DecodingOutput dOutput{
ITensor::slice(dJointOutput.ids, batchSlot, 1), ITensor::slice(dJointOutput.gatheredIds, batchSlot, 1)};
dOutput.beamHypotheses = dJointOutput.beamHypotheses.slice(batchSlot, 1);
slice(dOutput.parentIds, dJointOutput.parentIds);
slice(dOutput.cumLogProbs, dJointOutput.cumLogProbs);
slice(dOutput.cacheIndirection, dJointOutput.cacheIndirection);
slice(dOutput.lengths, dJointOutput.lengths);
slice(dOutput.finishReasons, dJointOutput.finishReasons);
slice(dOutput.logProbs, dJointOutput.logProbs);
dOutput.newTokens = ITensor::view(dJointOutput.newTokens);
TLLM_CHECK(dOutput.newTokens->getShape().d[0] == 1);
dOutput.newTokens->squeeze(0);
dOutput.newTokens = ITensor::slice(dOutput.newTokens, batchSlot, 1);
dOutput.logProbsTiled = dJointOutput.logProbsTiled;
if (streaming)
{
// in case of streaming we shouldn't overwrite the data in beamHypotheses, since the beam search kernels expect
// ungathered data but the kernels in gatherTree write in-place.
// Thus, we need to make a copy of the beamHypotheses
tensorrt_llm::kernels::invokeCopyBeamHypotheses(
dOutput.beamHypotheses, *mOutputBeamHypotheses, *dOutput.cumLogProbs, *mCumLogProbsTmp, *stream, mNumSMs);
dOutput.beamHypotheses = *mOutputBeamHypotheses;
dOutput.cumLogProbs = mCumLogProbsTmp;
}
kernels::gatherTree(dOutput, dInput, manager, samplingConfig);
CudaEvent event{};
stream->record(event);
mRuntimeStream->wait(event);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return event;
}
void GptDecoderBatched::newBatch(
GenerationInput const& inputs, GenerationOutput const& outputs, SamplingConfig const& samplingConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
// split batch into single requests
auto const& inputLengths = inputs.lengths;
mActualBatchSize = inputLengths->getShape().d[0];
mNumDecodingEngineTokens.resize(mActualBatchSize);
auto const& jointOutputIdsShape = mJointDecodingOutput->ids->getShape();
auto const maxBatchSize = jointOutputIdsShape.d[0];
TLLM_CHECK(mActualBatchSize <= maxBatchSize);
auto const maxBeamWidth = jointOutputIdsShape.d[1];
TLLM_CHECK(samplingConfig.beamWidth <= maxBeamWidth);
auto const inputIdsShape = inputs.ids->getShape();
TensorPtr inputIdsFlatView = ITensor::view(inputs.ids);
TensorPtr batchSlotsView = ITensor::slice(mBatchSlotsSetup, 0, mActualBatchSize);
auto batchSlots = BufferRange<SizeType32>(*batchSlotsView);
std::iota(batchSlots.begin(), batchSlots.end(), 0);
if (inputs.packed && inputIdsShape.nbDims == 2)
{ // For users still pass inputs.ids with shape [1, num_tokens], do squeeze for them.
inputIdsFlatView->squeeze(0);
}
auto inputLengthsHost = mBufferManager.copyFrom(*inputLengths, MemoryType::kCPU);
auto inputLengthsPtr = bufferCast<SizeType32>(*inputLengthsHost);
auto inputOffset = 0;
std::vector<SamplingConfig> samplingConfigs;
for (auto batchIdx = 0; batchIdx < mActualBatchSize; ++batchIdx)
{
mNumDecodingEngineTokens[batchIdx] = 1;
auto const inputLength = inputLengthsPtr[batchIdx];
auto const inputShape = ITensor::makeShape({inputLength});
TensorPtr inputView;
if (inputs.packed)
{
TLLM_CHECK(inputIdsFlatView->getShape().nbDims == 1);
inputView = ITensor::slice(inputIdsFlatView, inputOffset, inputLength);
inputOffset += inputLength;
}
else
{
inputView = ITensor::slice(inputs.ids, batchIdx, 1);
inputView->reshape(inputShape);
}
auto request = decoder_batch::Request{inputView, inputLength, inputs.maxNewTokens, inputs.endId};
if (inputs.embeddingBias)
{
TLLM_THROW("newBatch doesn't support embeddingBias yet.");
}
if (inputs.badWordsList)
{
auto const& shape = inputs.badWordsList->getShape();
if (shape.nbDims == 2)
{
request.badWordsList = inputs.badWordsList;
}
else
{
assert(shape.nbDims == 3);
TensorPtr badWordsListView = ITensor::slice(inputs.badWordsList, batchIdx, 1);
badWordsListView->squeeze(0);
request.badWordsList = badWordsListView;
}
}
if (inputs.stopWordsList)
{
TensorPtr stopWordsListView = ITensor::slice(inputs.stopWordsList, batchIdx, 1);
stopWordsListView->squeeze(0);
request.stopWordsList = stopWordsListView;
}
auto requestSamplingConfig = extractSamplingConfig(samplingConfig, batchIdx);
requestSamplingConfig.cumLogProbs = {{outputs.cumLogProbs != nullptr}};
requestSamplingConfig.outputLogProbs = {{outputs.logProbs != nullptr}};
newRequest(batchIdx, request, requestSamplingConfig);
samplingConfigs.push_back(requestSamplingConfig);
}
auto fusedSamplingConfig = samplingConfig;
fusedSamplingConfig.cumLogProbs = std::vector<bool>(mActualBatchSize, outputs.cumLogProbs != nullptr);
fusedSamplingConfig.outputLogProbs = std::vector<bool>(mActualBatchSize, outputs.logProbs != nullptr);
mDecoder->setup(fusedSamplingConfig, mActualBatchSize, batchSlotsView, {*mJointDecodingOutput});
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::forwardAsync(decoder::Output& output, decoder::Input const& input)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const& logitsShape = input.logits->getShape();
auto const batchSize = logitsShape.d[0];
auto constexpr singleRequest = 1;
std::vector<ITensor::SharedPtr> logits;
logits.reserve(batchSize);
for (auto batchIdx = 0; batchIdx < batchSize; ++batchIdx)
{
auto logitsSlice = std::shared_ptr(ITensor::slice(input.logits, batchIdx, singleRequest));
logits.emplace_back(
ITensor::view(logitsSlice, ITensor::makeShape({singleRequest, mBeamWidths[batchIdx], logitsShape.d[2]})));
}
decoder_batch::Input batchInput{logits};
batchInput.cacheIndirection = input.cacheIndirection;
decoder_batch::Output batchOutput;
batchOutput.cacheIndirection = output.cacheIndirection;
batchOutput.sequenceLengths = output.sequenceLengths;
mDecoderFinishEvent = forwardAsync(batchOutput, batchInput);
mBufferManager.setZero(*mFinishedSum);
kernels::reduce(
*mFinishedSum, *ITensor::slice(mJointDecodingOutput->finishedSum, 0, mActualBatchSize), *mRuntimeStream);
mRuntimeStream->record(mForwardEvent);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::forwardSync()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
forwardSync(*mDecoderFinishEvent);
// wait for mFinishedSum to be updated
mForwardEvent.synchronize();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void GptDecoderBatched::finalize(SamplingConfig const& samplingConfig) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto batchSlots = bufferCast<SizeType32>(*mBatchSlotsSetup);
for (SizeType32 batchIdx = 0; batchIdx < mActualBatchSize; ++batchIdx)
{
auto slot = batchSlots[batchIdx];
auto requestSamplingConfig = extractSamplingConfig(samplingConfig, slot);
auto event = postProcessRequest(slot, requestSamplingConfig, /*streaming*/ false);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
CudaEvent GptDecoderBatched::finalize(SizeType32 batchSlot, SamplingConfig const& samplingConfig, bool streaming) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto event = postProcessRequest(batchSlot, samplingConfig, streaming);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return event;
}