TensorRT-LLMs/tensorrt_llm/models/qwen/model.py
Hanjun Cho 80f918cc22
[None][feat] Add Qwen3 MoE support to TensorRT backend (#6470)
Signed-off-by: gkswns0531 <gkswns0531@gmail.com>
Signed-off-by: hanjuncho <gkswns0531@gmail.com>
Co-authored-by: bhsueh_NV <11360707+byshiue@users.noreply.github.com>
2025-08-06 17:02:35 +08:00

546 lines
22 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
from typing import Optional, Union
import torch
from tqdm import tqdm
from ..._utils import pad_vocab_size
from ...functional import LayerNormType, Tensor, recv, send
from ...layers import (MOE, Attention, AttentionMaskType, ColumnLinear,
Embedding, GatedMLP, RmsNorm, SharedMoE)
from ...layers.moe import MOEWeightWrapper
from ...logger import logger
from ...lora_manager import (LoraConfig,
get_default_trtllm_modules_to_hf_modules, use_lora)
from ...mapping import Mapping
from ...module import Module
from ...quantization import QuantAlgo
from ..model_weights_loader import ModelWeightsLoader
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
QuantConfig)
from .config import QWenConfig
from .convert import (load_hf_qwen, load_weights_from_hf_gptq_model,
load_weights_from_hf_model)
class QWenDecoderLayer(Module):
def __init__(self, config: QWenConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
dtype = config.dtype
self.tp_group = config.mapping.tp_group
self.tp_size = config.mapping.tp_size
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=dtype)
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
local_layer_idx = layer_idx - layers_range[0]
# Qwen3: Enable qk_layernorm for Q/K normalization (similar to Gemma3)
qk_layernorm = config.qwen_type in ('qwen3', 'qwen3_moe')
self.attention = Attention(
local_layer_idx=local_layer_idx,
hidden_size=config.hidden_size,
attention_head_size=config.head_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_seqlen_for_logn_scaling=config.seq_length,
max_position_embeddings=config.max_position_embeddings,
dtype=dtype,
attention_mask_type=AttentionMaskType.causal,
bias=config.attn_bias,
position_embedding_type=config.position_embedding_type,
rotary_embedding_base=config.rotary_base,
rotary_embedding_scaling=config.rotary_scaling,
tp_rank=config.mapping.tp_rank,
tp_group=self.tp_group,
tp_size=self.tp_size,
cp_rank=config.mapping.cp_rank,
cp_size=config.mapping.cp_size,
cp_group=config.mapping.cp_group,
quant_mode=config.quant_mode,
use_logn_scaling=config.use_logn_attn,
dense_bias=False,
# Qwen3: Add Q/K layer normalization
qk_layernorm=qk_layernorm,
layernorm_type=LayerNormType.RmsNorm
if qk_layernorm else LayerNormType.LayerNorm)
if config.moe.has_moe():
mlp_kwargs = {'moe_config': config.moe, 'mapping': config.mapping}
if config.qwen_type == 'qwen2_moe':
# Qwen2 MoE uses SharedMoE with shared expert
ClsMLP = SharedMoE
mlp_kwargs['use_shared_gate'] = True
mlp_kwargs['use_side_stream'] = True
mlp_kwargs['moe_config'].shared_expert_intermediate_size = \
config.moe_shared_expert_intermediate_size
elif config.qwen_type == 'qwen3_moe':
# Qwen3 MoE uses standard MOE without shared expert
ClsMLP = MOE
else:
ClsMLP = MOE
else:
ClsMLP = GatedMLP
mlp_kwargs = {}
# Qwen's real inter_size depends on qwen_type
if self.config.qwen_type == 'qwen':
intermediate_size = config.intermediate_size // 2
elif self.config.qwen_type in ('qwen2_moe', 'qwen3_moe'):
intermediate_size = config.moe_intermediate_size
else:
intermediate_size = config.intermediate_size
self.mlp = ClsMLP(hidden_size=config.hidden_size,
ffn_hidden_size=intermediate_size,
hidden_act=config.hidden_act,
dtype=dtype,
bias=config.mlp_bias,
tp_group=self.tp_group,
tp_size=self.tp_size,
quant_mode=config.quant_mode,
**mlp_kwargs)
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=dtype)
def forward(
self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
spec_decoding_params=None,
kv_cache_params=None,
attention_params=None,
lora_layer_params=None,
mrope_params=None,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(
hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
spec_decoding_params=spec_decoding_params,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_layer_params=lora_layer_params,
mrope_params=mrope_params,
)
if use_cache:
attention_output, presents = attention_output
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states,
lora_layer_params=lora_layer_params)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class QWenModel(Module):
def __init__(self, config: QWenConfig) -> None:
super().__init__()
self.mapping = config.mapping
if self.mapping.is_first_pp_rank():
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=config.dtype)
self.layers = DecoderLayerList(QWenDecoderLayer, config)
if self.mapping.is_last_pp_rank():
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
spec_decoding_params=None,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
mrope_params=None,
hidden_states=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None):
ptuning_args = [
prompt_embedding_table, prompt_tasks, prompt_vocab_size
] if prompt_embedding_table is not None else []
if self.mapping.is_first_pp_rank():
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
else:
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
hidden_states = self.layers.forward(
hidden_states,
use_cache=use_cache,
spec_decoding_params=spec_decoding_params,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_params=lora_params,
mrope_params=mrope_params)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class QWenForCausalLM(DecoderModelForCausalLM):
config_class = QWenConfig
def __init__(self, config: QWenConfig):
transformer = QWenModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
if config.mapping.is_last_pp_rank():
if config.architecture == 'Qwen2ForSequenceClassification':
lm_head = ColumnLinear(config.hidden_size,
config.num_labels,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = None
self.quant_mode = config.quant_mode
self.mapping = config.mapping
if config.qwen_type == 'qwen':
self.trtllm_modules_to_hf_modules = {
"attn_qkv": "c_attn",
"attn_dense": "attn.c_proj",
"mlp_h_to_4h": "w2",
"mlp_4h_to_h": "mlp.c_proj",
"mlp_gate": "w1",
}
elif config.qwen_type in ('qwen2_moe', 'qwen3_moe'):
self.trtllm_modules_to_hf_modules = copy.copy(
get_default_trtllm_modules_to_hf_modules())
# Common MoE expert mappings for both Qwen2 and Qwen3 MoE
self.trtllm_modules_to_hf_modules.update({
"moe_h_to_4h":
"mlp.experts.gate_proj",
"moe_4h_to_h":
"mlp.experts.down_proj",
"moe_gate":
"mlp.experts.up_proj",
})
# Qwen2 MoE additionally has shared expert
if config.qwen_type == 'qwen2_moe':
self.trtllm_modules_to_hf_modules.update({
"mlp_h_to_4h":
"mlp.shared_expert.gate_proj",
"mlp_4h_to_h":
"mlp.shared_expert.down_proj",
"mlp_gate":
"mlp.shared_expert.up_proj",
"mlp_router":
"mlp.shared_expert_gate",
})
else:
self.trtllm_modules_to_hf_modules = None
super().__init__(config, transformer, lm_head)
@classmethod
def from_hugging_face(
cls,
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
''' Create a QWenForCausalLM object from give parameters
'''
import transformers
load_model_on_cpu = kwargs.pop('load_model_on_cpu', False)
use_autoawq = kwargs.pop('use_autoawq', False)
assert hf_model_or_dir is not None
use_preloading = isinstance(hf_model_or_dir,
transformers.PreTrainedModel)
if use_preloading:
hf_model = hf_model_or_dir
hf_config_or_dir = hf_model.config
else:
hf_model_dir = hf_model_or_dir
hf_config_or_dir = hf_model_or_dir
config = QWenConfig.from_hugging_face(hf_config_or_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
if os.environ.get("TRTLLM_DISABLE_UNIFIED_CONVERTER") is None:
arg_dict = {"use_autoawq": True} if use_autoawq else {}
custom_dict = {}
if config.qwen_type == "qwen":
custom_dict = {
"transformer": "transformer",
"vocab_embedding": "wte",
"ln_f": "ln_f",
"layers": "h",
"attention": "attn",
"qkv": "c_attn",
"dense": "c_proj",
"gate": "w1",
"proj": "c_proj",
"fc": "w2",
"input_layernorm": "ln_1",
"post_layernorm": "ln_2",
}
elif config.qwen_type == "qwen2_moe":
custom_dict = {
"mlp.shared_expert": "mlp.shared_expert",
"mlp.shared_expert_gate": "mlp.shared_expert_gate",
"fc": ["up_proj", "gate_proj"],
}
elif config.qwen_type == "qwen3_moe":
custom_dict = {
"fc": ["up_proj", "gate_proj"],
"q_layernorm": "q_norm",
"k_layernorm": "k_norm",
}
elif config.qwen_type in {"qwen2", "qwen2_vl"
} and config.tie_word_embeddings:
custom_dict = {"lm_head": "model.embed_tokens"}
elif config.architecture == "Qwen2ForSequenceClassification":
custom_dict = {
"lm_head": "score",
}
elif config.qwen_type == "qwen2_llava_onevision":
custom_dict = {
"transformer": "language_model.model",
"lm_head": "language_model.lm_head",
}
elif config.qwen_type == "qwen2_audio":
custom_dict = {
"transformer": "language_model.model",
"lm_head": "language_model.lm_head",
}
elif config.qwen_type == "qwen3":
custom_dict = {
"q_layernorm": "q_norm",
"k_layernorm": "k_norm",
}
loader = ModelWeightsLoader(hf_model_dir, custom_dict)
model = cls(config)
if config.qwen_type == "qwen" and model.config.mapping.has_tp():
def reshape_qkv(weights):
if weights is None:
return weights
mapping = model.config.mapping
unsqueeze = False
if isinstance(weights, torch.Tensor):
unsqueeze = True
weights = [weights]
for idx, w in enumerate(weights):
if quant_config.quant_algo == QuantAlgo.W4A16_GPTQ:
w = w.reshape(-1, 3, w.shape[-1] // 3)
w = w.chunk(mapping.tp_size, 2)[mapping.tp_rank]
if w.shape[0] == 1:
weights[idx] = w.reshape(-1)
else:
weights[idx] = w.reshape(w.shape[0], -1)
else:
w = w.reshape(3, w.shape[0] // 3, -1)
w = w.chunk(mapping.tp_size, 1)[mapping.tp_rank]
if w.shape[-1] == 1:
weights[idx] = w.reshape(-1)
else:
weights[idx] = w.reshape(-1, w.shape[-1])
if unsqueeze:
return weights[0]
else:
return weights
loader.update_key_mapping(model)
tllm_weights = {}
for tllm_key, _ in tqdm(model.named_parameters()):
if "qkv" in tllm_key:
tllm_weights.update(
loader.load(tllm_key,
reshape_qkv,
skip_tp=True,
custom_postprocess_kwargs=arg_dict))
else:
tllm_weights.update(
loader.load(tllm_key,
custom_postprocess_kwargs=arg_dict))
loader.fill(tllm_weights)
elif config.qwen_type in ("qwen2_moe", "qwen3_moe"):
for tllm_key, _ in model.named_parameters():
sub_module = model
for attr in tllm_key.split(".")[:-1]:
sub_module = getattr(sub_module, attr)
if "router" in tllm_key or isinstance(
sub_module, MOEWeightWrapper):
sub_module_dic = sub_module.tllm_to_externel_key_dict
sub_module_dic["mlp"] = "mlp"
if "fc" in sub_module_dic.keys():
sub_module_dic["fc"] = [
hf_keyword.replace("w1", "gate_proj")
for hf_keyword in sub_module_dic["fc"]
]
sub_module_dic["fc"] = [
hf_keyword.replace("w3", "up_proj")
for hf_keyword in sub_module_dic["fc"]
]
if "proj" in sub_module_dic.keys():
sub_module_dic["proj"] = [
hf_keyword.replace("w2", "down_proj")
for hf_keyword in sub_module_dic["proj"]
]
sub_module.tllm_to_externel_key_dict = sub_module_dic
def concat_gate_up_proj(weights):
return torch.cat(weights, dim=-2)
loader.update_key_mapping(model)
tllm_weights = {}
for tllm_key, _ in tqdm(model.named_parameters()):
if tllm_key.endswith("shared_expert.fc.weight"):
tllm_weights.update(
loader.load(tllm_key,
concat_gate_up_proj,
custom_postprocess_kwargs=arg_dict))
else:
tllm_weights.update(
loader.load(tllm_key,
custom_postprocess_kwargs=arg_dict))
loader.fill(tllm_weights)
else:
# For Qwen1 w/o TP, Qwen1.5 and Qwen2 w/o MoE
loader.generate_tllm_weights(model, arg_dict)
else:
if not use_preloading:
hf_model = load_hf_qwen(hf_model_dir, load_model_on_cpu)
logger.debug(f"HuggingFace model: {hf_model}")
model = QWenForCausalLM(config)
logger.debug(f"TensorRT-LLM model: {model}")
if quant_config.quant_algo == QuantAlgo.W4A16_GPTQ:
weights = load_weights_from_hf_gptq_model(hf_model, config)
else:
weights = load_weights_from_hf_model(hf_model, config)
model.load(weights)
return model
def default_plugin_config(self, **kwargs):
plugin_config = super().default_plugin_config(**kwargs)
if self.quant_mode.is_int4_weight_only_per_group():
plugin_config.weight_only_groupwise_quant_matmul_plugin = 'auto'
return plugin_config
@classmethod
def quantize(
cls,
hf_model_dir: str,
output_dir: str,
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
*,
calib_dataset='cnn_dailymail',
calib_batches=512,
calib_batch_size=1,
calib_max_seq_length=512,
random_seed=1234,
tokenizer_max_seq_length=2048,
**kwargs,
):
if quant_config._requires_modelopt_quantization:
# modelopt quantization flow
super().quantize(hf_model_dir,
output_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
calib_dataset=calib_dataset,
calib_batches=calib_batches,
calib_batch_size=calib_batch_size,
calib_max_seq_length=calib_max_seq_length,
random_seed=random_seed,
tokenizer_max_seq_length=tokenizer_max_seq_length)
elif quant_config._requires_calibration:
# non-modelopt quantization flow
from . import convert
config = QWenConfig.from_hugging_face(hf_model_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
convert.quantize(hf_model_dir,
output_dir,
config=config,
calib_dataset=calib_dataset)
else:
raise ValueError(
f"The quant_config ({quant_config}) does not require calibration, try {cls.__name__}.from_hugging_face instead."
)
def use_lora(self, lora_config: LoraConfig):
use_lora(self, lora_config, self.trtllm_modules_to_hf_modules)