TensorRT-LLMs/examples/llm_kv_cache_connector.html
2025-11-07 02:24:02 +00:00

901 lines
74 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>KV Cache Connector &#8212; TensorRT LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../_static/custom.css?v=19d20f17" />
<!-- So that users can add custom icons -->
<script src="../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = 'examples/llm_kv_cache_connector';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.2.0rc2';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../_static/favicon.png"/>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="KV Cache Offloading" href="llm_kv_cache_offloading.html" />
<link rel="prev" title="Speculative Decoding" href="llm_speculative_decoding.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.2.0rc2" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l2"><a class="reference internal" href="../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 current active has-children"><a class="reference internal" href="llm_api_examples.html">LLM Examples</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_sparse_attention.html">Sparse Attention</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_kv_cache_offloading.html">KV Cache Offloading</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo_k8s_example.html">Dynamo K8s Example</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-deepseek-r1-on-trtllm.html">Deployment Guide for DeepSeek R1 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-llama3.3-70b-on-trtllm.html">Deployment Guide for Llama3.3 70B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-llama4-scout-on-trtllm.html">Deployment Guide for Llama4 Scout 17B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-gpt-oss-on-trtllm.html">Deployment Guide for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-qwen3-next-on-trtllm.html">Deployment Guide for Qwen3 Next on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../models/supported-models.html">Supported Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../models/adding-new-model.html">Adding a New Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-eval.html">trtllm-eval</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../features/feature-combination-matrix.html">Feature Combination Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/disagg-serving.html">Disaggregated Serving</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/kvcache.html">KV Cache System</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/long-sequence.html">Long Sequences</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/lora.html">LoRA (Low-Rank Adaptation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/overlap-scheduler.html">Overlap Scheduler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/sampling.html">Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/additional-outputs.html">Additional Outputs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/speculative-decoding.html">Speculative Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/checkpoint-loading.html">Checkpoint Loading</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/auto_deploy/auto-deploy.html">AutoDeploy (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/ray-orchestrator.html">Ray Orchestrator (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/torch_compile_and_piecewise_cuda_graph.html">Torch Compile &amp; Piecewise CUDA Graph</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/overview.html">Architecture Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-analysis.html">Performance Analysis</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/dev-containers.html">Using Dev Containers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/api-change.html">LLM API Change Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/kv-transfer.html">Introduction to KV Cache Transmission</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html">Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html">Inference Time Compute Implementation in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html">Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="llm_api_examples.html" class="nav-link">LLM Examples</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">KV Cache Connector</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="kv-cache-connector">
<h1>KV Cache Connector<a class="headerlink" href="#kv-cache-connector" title="Link to this heading">#</a></h1>
<p>Source <a class="github reference external" href="https://github.com/NVIDIA/TensorRT-LLM/blob/31116825b39f4e6a6a1e127001f5204b73d1dc32/examples/llm-api/llm_kv_cache_connector.py">NVIDIA/TensorRT-LLM</a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="linenos"> 1</span>
<span class="linenos"> 2</span><span class="kn">import</span><span class="w"> </span><span class="nn">os</span>
<span class="linenos"> 3</span><span class="kn">import</span><span class="w"> </span><span class="nn">sys</span>
<span class="linenos"> 4</span><span class="kn">from</span><span class="w"> </span><span class="nn">dataclasses</span><span class="w"> </span><span class="kn">import</span> <span class="n">dataclass</span><span class="p">,</span> <span class="n">field</span>
<span class="linenos"> 5</span><span class="kn">from</span><span class="w"> </span><span class="nn">pathlib</span><span class="w"> </span><span class="kn">import</span> <span class="n">Path</span>
<span class="linenos"> 6</span><span class="kn">from</span><span class="w"> </span><span class="nn">tempfile</span><span class="w"> </span><span class="kn">import</span> <span class="n">TemporaryDirectory</span>
<span class="linenos"> 7</span>
<span class="linenos"> 8</span><span class="kn">import</span><span class="w"> </span><span class="nn">click</span>
<span class="linenos"> 9</span><span class="kn">import</span><span class="w"> </span><span class="nn">torch</span>
<span class="linenos"> 10</span>
<span class="linenos"> 11</span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span><span class="p">,</span> <span class="n">logger</span>
<span class="linenos"> 12</span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm._torch.pyexecutor.kv_cache_connector</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span>
<span class="linenos"> 13</span> <span class="n">KvCacheConnectorScheduler</span><span class="p">,</span> <span class="n">KvCacheConnectorWorker</span><span class="p">,</span> <span class="n">SchedulerOutput</span><span class="p">)</span>
<span class="linenos"> 14</span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.bindings.internal.batch_manager</span><span class="w"> </span><span class="kn">import</span> <span class="n">LlmRequest</span>
<span class="linenos"> 15</span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.llmapi.llm_args</span><span class="w"> </span><span class="kn">import</span> <span class="n">KvCacheConnectorConfig</span><span class="p">,</span> <span class="n">TorchLlmArgs</span>
<span class="linenos"> 16</span>
<span class="linenos"> 17</span><span class="c1"># This is a simple example of the use of the KV cache connector.</span>
<span class="linenos"> 18</span><span class="c1"># It persists KV cache contents into a folder, and can load them back on subsequent runs.</span>
<span class="linenos"> 19</span><span class="c1"># See tensorrt_llm/_torch/pyexecutor/connector.py for details about the KV cache connector interface.</span>
<span class="linenos"> 20</span><span class="c1"># NOTE: This example connector implementation is NOT suitable for production use.</span>
<span class="linenos"> 21</span>
<span class="linenos"> 22</span><span class="n">CONNECTOR_CACHE_FOLDER_KEY</span> <span class="o">=</span> <span class="s2">&quot;CONNECTOR_CACHE_FOLDER&quot;</span>
<span class="linenos"> 23</span>
<span class="linenos"> 24</span>
<span class="linenos"> 25</span><span class="nd">@dataclass</span>
<span class="linenos"> 26</span><span class="k">class</span><span class="w"> </span><span class="nc">PersistentKvCacheConnectorMetadata</span><span class="p">:</span>
<span class="linenos"> 27</span> <span class="n">load</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">tuple</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">int</span><span class="p">]]</span> <span class="o">=</span> <span class="n">field</span><span class="p">(</span><span class="n">default_factory</span><span class="o">=</span><span class="nb">list</span><span class="p">)</span>
<span class="linenos"> 28</span> <span class="n">save</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">tuple</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">int</span><span class="p">]]</span> <span class="o">=</span> <span class="n">field</span><span class="p">(</span><span class="n">default_factory</span><span class="o">=</span><span class="nb">list</span><span class="p">)</span>
<span class="linenos"> 29</span>
<span class="linenos"> 30</span>
<span class="linenos"> 31</span><span class="k">class</span><span class="w"> </span><span class="nc">PersistentKvCacheConnectorWorker</span><span class="p">(</span><span class="n">KvCacheConnectorWorker</span><span class="p">):</span>
<span class="linenos"> 32</span>
<span class="linenos"> 33</span> <span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">llm_args</span><span class="p">:</span> <span class="n">TorchLlmArgs</span><span class="p">):</span>
<span class="linenos"> 34</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">llm_args</span><span class="p">)</span>
<span class="linenos"> 35</span>
<span class="linenos"> 36</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_tensor</span> <span class="o">=</span> <span class="kc">None</span>
<span class="linenos"> 37</span>
<span class="linenos"> 38</span> <span class="k">def</span><span class="w"> </span><span class="nf">register_kv_caches</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">kv_cache_tensor</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
<span class="linenos"> 39</span> <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_tensor</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">,</span> <span class="s2">&quot;KV cache tensor already registered&quot;</span>
<span class="linenos"> 40</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_tensor</span> <span class="o">=</span> <span class="n">kv_cache_tensor</span>
<span class="linenos"> 41</span>
<span class="linenos"> 42</span> <span class="k">def</span><span class="w"> </span><span class="nf">start_load_kv</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">stream</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">Stream</span><span class="p">):</span>
<span class="linenos"> 43</span> <span class="c1"># Do all loads synchronously, and blockwise.</span>
<span class="linenos"> 44</span> <span class="k">for</span> <span class="n">path</span><span class="p">,</span> <span class="n">block_id</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_metadata</span><span class="o">.</span><span class="n">load</span><span class="p">:</span>
<span class="linenos"> 45</span> <span class="n">cpu_tensor</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">map_location</span><span class="o">=</span><span class="s2">&quot;cpu&quot;</span><span class="p">)</span>
<span class="linenos"> 46</span>
<span class="linenos"> 47</span> <span class="c1"># Copy into the device block.</span>
<span class="linenos"> 48</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_tensor</span><span class="p">[</span><span class="n">block_id</span><span class="p">]</span><span class="o">.</span><span class="n">copy_</span><span class="p">(</span><span class="n">cpu_tensor</span><span class="p">,</span> <span class="n">non_blocking</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="linenos"> 49</span>
<span class="linenos"> 50</span> <span class="k">def</span><span class="w"> </span><span class="nf">wait_for_layer_load</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">layer_idx</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">stream</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">Stream</span><span class="p">):</span>
<span class="linenos"> 51</span> <span class="k">pass</span>
<span class="linenos"> 52</span>
<span class="linenos"> 53</span> <span class="k">def</span><span class="w"> </span><span class="nf">save_kv_layer</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">layer_idx</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">stream</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">Stream</span><span class="p">):</span>
<span class="linenos"> 54</span> <span class="k">pass</span>
<span class="linenos"> 55</span>
<span class="linenos"> 56</span> <span class="k">def</span><span class="w"> </span><span class="nf">wait_for_save</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">stream</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">Stream</span><span class="p">):</span>
<span class="linenos"> 57</span>
<span class="linenos"> 58</span> <span class="c1"># Make sure the forward pass is complete before beginning our save.</span>
<span class="linenos"> 59</span> <span class="n">stream</span><span class="o">.</span><span class="n">synchronize</span><span class="p">()</span>
<span class="linenos"> 60</span>
<span class="linenos"> 61</span> <span class="k">for</span> <span class="n">path</span><span class="p">,</span> <span class="n">block_id</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_metadata</span><span class="o">.</span><span class="n">save</span><span class="p">:</span>
<span class="linenos"> 62</span> <span class="n">cpu_tensor</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_tensor</span><span class="p">[</span><span class="n">block_id</span><span class="p">]</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span>
<span class="linenos"> 63</span>
<span class="linenos"> 64</span> <span class="c1"># Don&#39;t write anything if this specific block already exists.</span>
<span class="linenos"> 65</span> <span class="k">if</span> <span class="n">Path</span><span class="p">(</span><span class="n">path</span><span class="p">)</span><span class="o">.</span><span class="n">exists</span><span class="p">():</span>
<span class="linenos"> 66</span> <span class="k">continue</span>
<span class="linenos"> 67</span>
<span class="linenos"> 68</span> <span class="c1"># Do a blocking save to the file. This way, we only return once all saves are complete.</span>
<span class="linenos"> 69</span> <span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">cpu_tensor</span><span class="p">,</span> <span class="n">path</span><span class="p">)</span>
<span class="linenos"> 70</span>
<span class="linenos"> 71</span> <span class="k">def</span><span class="w"> </span><span class="nf">get_finished</span><span class="p">(</span>
<span class="linenos"> 72</span> <span class="bp">self</span><span class="p">,</span> <span class="n">finished_gen_req_ids</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span>
<span class="linenos"> 73</span> <span class="n">started_loading_req_ids</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">tuple</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]]:</span>
<span class="linenos"> 74</span>
<span class="linenos"> 75</span> <span class="k">return</span> <span class="p">[],</span> <span class="p">[]</span>
<span class="linenos"> 76</span>
<span class="linenos"> 77</span>
<span class="linenos"> 78</span><span class="k">class</span><span class="w"> </span><span class="nc">PersistentKvCacheConnectorLeader</span><span class="p">(</span><span class="n">KvCacheConnectorScheduler</span><span class="p">):</span>
<span class="linenos"> 79</span>
<span class="linenos"> 80</span> <span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">llm_args</span><span class="p">:</span> <span class="n">TorchLlmArgs</span><span class="p">):</span>
<span class="linenos"> 81</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">llm_args</span><span class="p">)</span>
<span class="linenos"> 82</span>
<span class="linenos"> 83</span> <span class="bp">self</span><span class="o">.</span><span class="n">block_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_llm_args</span><span class="o">.</span><span class="n">kv_cache_config</span><span class="o">.</span><span class="n">tokens_per_block</span>
<span class="linenos"> 84</span> <span class="bp">self</span><span class="o">.</span><span class="n">pending_loads</span> <span class="o">=</span> <span class="p">{}</span>
<span class="linenos"> 85</span>
<span class="linenos"> 86</span> <span class="bp">self</span><span class="o">.</span><span class="n">cache_folder</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">CONNECTOR_CACHE_FOLDER_KEY</span><span class="p">,</span>
<span class="linenos"> 87</span> <span class="s2">&quot;./connector_cache&quot;</span><span class="p">)</span>
<span class="linenos"> 88</span>
<span class="linenos"> 89</span> <span class="n">os</span><span class="o">.</span><span class="n">makedirs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cache_folder</span><span class="p">,</span> <span class="n">exist_ok</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="linenos"> 90</span>
<span class="linenos"> 91</span> <span class="k">def</span><span class="w"> </span><span class="nf">build_connector_meta</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scheduler_output</span><span class="p">:</span> <span class="n">SchedulerOutput</span><span class="p">):</span>
<span class="linenos"> 92</span> <span class="c1"># NOTE: This is a simplified implementation, and does not work with chunked prefill.</span>
<span class="linenos"> 93</span>
<span class="linenos"> 94</span> <span class="n">metadata</span> <span class="o">=</span> <span class="n">PersistentKvCacheConnectorMetadata</span><span class="p">()</span>
<span class="linenos"> 95</span>
<span class="linenos"> 96</span> <span class="k">for</span> <span class="n">req</span> <span class="ow">in</span> <span class="n">scheduler_output</span><span class="o">.</span><span class="n">new_requests</span><span class="p">:</span>
<span class="linenos"> 97</span> <span class="c1"># If we don&#39;t have any pending loads for this request, we can skip it.</span>
<span class="linenos"> 98</span> <span class="k">if</span> <span class="n">req</span><span class="o">.</span><span class="n">request_id</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">pending_loads</span><span class="p">:</span>
<span class="linenos"> 99</span> <span class="k">continue</span>
<span class="linenos">100</span>
<span class="linenos">101</span> <span class="n">num_computed_blocks</span> <span class="o">=</span> <span class="n">req</span><span class="o">.</span><span class="n">computed_position</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">block_size</span>
<span class="linenos">102</span> <span class="n">block_ids</span> <span class="o">=</span> <span class="n">req</span><span class="o">.</span><span class="n">new_block_ids</span>
<span class="linenos">103</span>
<span class="linenos">104</span> <span class="n">pending_load</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pending_loads</span><span class="p">[</span><span class="n">req</span><span class="o">.</span><span class="n">request_id</span><span class="p">]</span>
<span class="linenos">105</span>
<span class="linenos">106</span> <span class="k">for</span> <span class="n">file_path</span><span class="p">,</span> <span class="n">block_pos</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span>
<span class="linenos">107</span> <span class="n">pending_load</span><span class="p">,</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_computed_blocks</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">block_ids</span><span class="p">))):</span>
<span class="linenos">108</span> <span class="n">metadata</span><span class="o">.</span><span class="n">load</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">file_path</span><span class="p">,</span> <span class="n">block_ids</span><span class="p">[</span><span class="n">block_pos</span><span class="p">]))</span>
<span class="linenos">109</span>
<span class="linenos">110</span> <span class="c1"># Break up the remainder of the token sequence into chunks.</span>
<span class="linenos">111</span> <span class="n">chunks</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_chunk_tokens</span><span class="p">(</span><span class="n">req</span><span class="o">.</span><span class="n">new_tokens</span><span class="p">)</span>
<span class="linenos">112</span>
<span class="linenos">113</span> <span class="c1"># For each chunk that isn&#39;t already on device, and isn&#39;t in our connector cache, we need to save it.</span>
<span class="linenos">114</span> <span class="k">for</span> <span class="n">block_pos</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_computed_blocks</span> <span class="o">+</span> <span class="nb">len</span><span class="p">(</span><span class="n">pending_load</span><span class="p">),</span>
<span class="linenos">115</span> <span class="nb">len</span><span class="p">(</span><span class="n">block_ids</span><span class="p">)):</span>
<span class="linenos">116</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">chunks</span><span class="p">[</span><span class="n">block_pos</span><span class="p">])</span> <span class="o">==</span> <span class="bp">self</span><span class="o">.</span><span class="n">block_size</span><span class="p">:</span>
<span class="linenos">117</span> <span class="n">hashed_tokens</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_hash_tokens</span><span class="p">(</span><span class="n">chunks</span><span class="p">[</span><span class="n">block_pos</span><span class="p">])</span>
<span class="linenos">118</span>
<span class="linenos">119</span> <span class="n">file_path</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_file_path</span><span class="p">(</span><span class="n">hashed_tokens</span><span class="p">)</span>
<span class="linenos">120</span>
<span class="linenos">121</span> <span class="n">metadata</span><span class="o">.</span><span class="n">save</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">file_path</span><span class="p">,</span> <span class="n">block_ids</span><span class="p">[</span><span class="n">block_pos</span><span class="p">]))</span>
<span class="linenos">122</span>
<span class="linenos">123</span> <span class="bp">self</span><span class="o">.</span><span class="n">pending_loads</span> <span class="o">=</span> <span class="p">{}</span>
<span class="linenos">124</span>
<span class="linenos">125</span> <span class="k">return</span> <span class="n">metadata</span>
<span class="linenos">126</span>
<span class="linenos">127</span> <span class="k">def</span><span class="w"> </span><span class="nf">_hash_tokens</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tokens</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="linenos">128</span> <span class="k">return</span> <span class="nb">abs</span><span class="p">(</span><span class="nb">hash</span><span class="p">(</span><span class="nb">tuple</span><span class="p">(</span><span class="n">tokens</span><span class="p">)))</span>
<span class="linenos">129</span>
<span class="linenos">130</span> <span class="k">def</span><span class="w"> </span><span class="nf">_file_path</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hash_value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Path</span><span class="p">:</span>
<span class="linenos">131</span> <span class="k">return</span> <span class="n">Path</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cache_folder</span><span class="p">)</span> <span class="o">/</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">hash_value</span><span class="si">}</span><span class="s2">.pt&quot;</span>
<span class="linenos">132</span>
<span class="linenos">133</span> <span class="k">def</span><span class="w"> </span><span class="nf">_chunk_tokens</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tokens</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]]:</span>
<span class="linenos">134</span> <span class="k">return</span> <span class="p">[</span>
<span class="linenos">135</span> <span class="n">tokens</span><span class="p">[</span><span class="n">i</span><span class="p">:</span><span class="n">i</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">block_size</span><span class="p">]</span>
<span class="linenos">136</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">tokens</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">block_size</span><span class="p">)</span>
<span class="linenos">137</span> <span class="p">]</span>
<span class="linenos">138</span>
<span class="linenos">139</span> <span class="k">def</span><span class="w"> </span><span class="nf">get_num_new_matched_tokens</span><span class="p">(</span>
<span class="linenos">140</span> <span class="bp">self</span><span class="p">,</span> <span class="n">request</span><span class="p">:</span> <span class="n">LlmRequest</span><span class="p">,</span>
<span class="linenos">141</span> <span class="n">num_computed_tokens</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">tuple</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">bool</span><span class="p">]:</span>
<span class="linenos">142</span> <span class="bp">self</span><span class="o">.</span><span class="n">pending_loads</span><span class="p">[</span><span class="n">request</span><span class="o">.</span><span class="n">request_id</span><span class="p">]</span> <span class="o">=</span> <span class="p">[]</span>
<span class="linenos">143</span>
<span class="linenos">144</span> <span class="c1"># Don&#39;t bother with sequences with partial matches.</span>
<span class="linenos">145</span> <span class="k">if</span> <span class="p">(</span><span class="n">num_computed_tokens</span> <span class="o">%</span> <span class="bp">self</span><span class="o">.</span><span class="n">block_size</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="linenos">146</span> <span class="k">return</span> <span class="mi">0</span><span class="p">,</span> <span class="kc">False</span>
<span class="linenos">147</span>
<span class="linenos">148</span> <span class="n">computed_blocks</span> <span class="o">=</span> <span class="n">num_computed_tokens</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">block_size</span>
<span class="linenos">149</span>
<span class="linenos">150</span> <span class="c1"># Get all the tokens that don&#39;t have a cache hit on device.</span>
<span class="linenos">151</span> <span class="n">remaining_tokens</span> <span class="o">=</span> <span class="n">request</span><span class="o">.</span><span class="n">get_tokens</span><span class="p">(</span><span class="mi">0</span><span class="p">)[</span><span class="n">computed_blocks</span> <span class="o">*</span>
<span class="linenos">152</span> <span class="bp">self</span><span class="o">.</span><span class="n">block_size</span><span class="p">:]</span>
<span class="linenos">153</span>
<span class="linenos">154</span> <span class="n">remaining_chunks</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_chunk_tokens</span><span class="p">(</span><span class="n">remaining_tokens</span><span class="p">)</span>
<span class="linenos">155</span>
<span class="linenos">156</span> <span class="c1"># For each chunk, check if it exists in our cache.</span>
<span class="linenos">157</span> <span class="k">for</span> <span class="n">chunk</span> <span class="ow">in</span> <span class="n">remaining_chunks</span><span class="p">:</span>
<span class="linenos">158</span> <span class="c1"># Only do full blocks.</span>
<span class="linenos">159</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">chunk</span><span class="p">)</span> <span class="o">==</span> <span class="bp">self</span><span class="o">.</span><span class="n">block_size</span><span class="p">:</span>
<span class="linenos">160</span> <span class="n">hashed_tokens</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_hash_tokens</span><span class="p">(</span><span class="n">chunk</span><span class="p">)</span>
<span class="linenos">161</span>
<span class="linenos">162</span> <span class="n">file_path</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_file_path</span><span class="p">(</span><span class="n">hashed_tokens</span><span class="p">)</span>
<span class="linenos">163</span>
<span class="linenos">164</span> <span class="c1"># If we get a cache hit, we want to load it into device.</span>
<span class="linenos">165</span> <span class="c1"># Otherwise, we can stop looking.</span>
<span class="linenos">166</span> <span class="k">if</span> <span class="n">file_path</span><span class="o">.</span><span class="n">exists</span><span class="p">():</span>
<span class="linenos">167</span> <span class="bp">self</span><span class="o">.</span><span class="n">pending_loads</span><span class="p">[</span><span class="n">request</span><span class="o">.</span><span class="n">request_id</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">file_path</span><span class="p">)</span>
<span class="linenos">168</span> <span class="k">else</span><span class="p">:</span>
<span class="linenos">169</span> <span class="k">break</span>
<span class="linenos">170</span>
<span class="linenos">171</span> <span class="n">logger</span><span class="o">.</span><span class="n">info</span><span class="p">(</span>
<span class="linenos">172</span> <span class="sa">f</span><span class="s2">&quot;KV CONNECTOR: Matched </span><span class="si">{</span><span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pending_loads</span><span class="p">[</span><span class="n">request</span><span class="o">.</span><span class="n">request_id</span><span class="p">])</span><span class="si">}</span><span class="s2"> blocks for request </span><span class="si">{</span><span class="n">request</span><span class="o">.</span><span class="n">request_id</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="linenos">173</span> <span class="p">)</span>
<span class="linenos">174</span>
<span class="linenos">175</span> <span class="k">return</span> <span class="nb">len</span><span class="p">(</span>
<span class="linenos">176</span> <span class="bp">self</span><span class="o">.</span><span class="n">pending_loads</span><span class="p">[</span><span class="n">request</span><span class="o">.</span><span class="n">request_id</span><span class="p">])</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">block_size</span><span class="p">,</span> <span class="kc">False</span>
<span class="linenos">177</span>
<span class="linenos">178</span> <span class="k">def</span><span class="w"> </span><span class="nf">request_finished</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">request</span><span class="p">:</span> <span class="n">LlmRequest</span><span class="p">,</span>
<span class="linenos">179</span> <span class="n">cache_block_ids</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="linenos">180</span> <span class="c1"># We don&#39;t do any asynchronous saving, so always return False</span>
<span class="linenos">181</span> <span class="k">return</span> <span class="kc">False</span>
<span class="linenos">182</span>
<span class="linenos">183</span> <span class="k">def</span><span class="w"> </span><span class="nf">update_state_after_alloc</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">request</span><span class="p">:</span> <span class="n">LlmRequest</span><span class="p">,</span>
<span class="linenos">184</span> <span class="n">block_ids</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]):</span>
<span class="linenos">185</span> <span class="k">pass</span>
<span class="linenos">186</span>
<span class="linenos">187</span>
<span class="linenos">188</span><span class="nd">@click</span><span class="o">.</span><span class="n">command</span><span class="p">()</span>
<span class="linenos">189</span><span class="nd">@click</span><span class="o">.</span><span class="n">argument</span><span class="p">(</span><span class="s2">&quot;model&quot;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="nb">str</span><span class="p">)</span>
<span class="linenos">190</span><span class="k">def</span><span class="w"> </span><span class="nf">main</span><span class="p">(</span><span class="n">model</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
<span class="linenos">191</span> <span class="n">sys</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span>
<span class="linenos">192</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">dirname</span><span class="p">(</span><span class="vm">__file__</span><span class="p">),</span>
<span class="linenos">193</span> <span class="s2">&quot;..&quot;</span><span class="p">,</span>
<span class="linenos">194</span> <span class="p">))</span>
<span class="linenos">195</span>
<span class="linenos">196</span> <span class="n">this_module</span> <span class="o">=</span> <span class="vm">__file__</span><span class="p">[</span><span class="vm">__file__</span><span class="o">.</span><span class="n">rfind</span><span class="p">(</span><span class="s2">&quot;/&quot;</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">:</span><span class="vm">__file__</span><span class="o">.</span><span class="n">rfind</span><span class="p">(</span><span class="s2">&quot;.py&quot;</span><span class="p">)]</span>
<span class="linenos">197</span>
<span class="linenos">198</span> <span class="n">kv_connector_config</span> <span class="o">=</span> <span class="n">KvCacheConnectorConfig</span><span class="p">(</span>
<span class="linenos">199</span> <span class="n">connector_module</span><span class="o">=</span><span class="n">this_module</span><span class="p">,</span>
<span class="linenos">200</span> <span class="n">connector_scheduler_class</span><span class="o">=</span><span class="s2">&quot;PersistentKvCacheConnectorLeader&quot;</span><span class="p">,</span>
<span class="linenos">201</span> <span class="n">connector_worker_class</span><span class="o">=</span><span class="s2">&quot;PersistentKvCacheConnectorWorker&quot;</span><span class="p">,</span>
<span class="linenos">202</span> <span class="p">)</span>
<span class="linenos">203</span>
<span class="linenos">204</span> <span class="n">connector_cache_dir</span> <span class="o">=</span> <span class="n">TemporaryDirectory</span><span class="p">()</span>
<span class="linenos">205</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="n">CONNECTOR_CACHE_FOLDER_KEY</span><span class="p">]</span> <span class="o">=</span> <span class="n">connector_cache_dir</span><span class="o">.</span><span class="n">name</span>
<span class="linenos">206</span>
<span class="linenos">207</span> <span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="n">model</span><span class="o">=</span><span class="n">model</span><span class="p">,</span>
<span class="linenos">208</span> <span class="n">backend</span><span class="o">=</span><span class="s2">&quot;pytorch&quot;</span><span class="p">,</span>
<span class="linenos">209</span> <span class="n">cuda_graph_config</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="linenos">210</span> <span class="n">kv_connector_config</span><span class="o">=</span><span class="n">kv_connector_config</span><span class="p">)</span>
<span class="linenos">211</span>
<span class="linenos">212</span> <span class="n">test_text</span> <span class="o">=</span> <span class="p">(</span>
<span class="linenos">213</span> <span class="s2">&quot;Nvidia Corporation is an American technology company headquartered in Santa Clara, California.&quot;</span>
<span class="linenos">214</span> <span class="s2">&quot;Founded in 1993 by Jensen Huang, Chris Malachowsky, and Curtis Priem, it develops graphics processing units (GPUs), &quot;</span>
<span class="linenos">215</span> <span class="s2">&quot;system on a chips (SoCs), and application programming interfaces (APIs) for data science, high-performance computing, &quot;</span>
<span class="linenos">216</span> <span class="s2">&quot;and mobile and automotive applications. Tell me about the company.&quot;</span><span class="p">)</span>
<span class="linenos">217</span>
<span class="linenos">218</span> <span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">max_tokens</span><span class="o">=</span><span class="mi">32</span><span class="p">)</span>
<span class="linenos">219</span>
<span class="linenos">220</span> <span class="n">output</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">([</span><span class="n">test_text</span><span class="p">],</span> <span class="n">sampling_params</span><span class="p">)</span>
<span class="linenos">221</span> <span class="n">text0</span> <span class="o">=</span> <span class="n">output</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span>
<span class="linenos">222</span>
<span class="linenos">223</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;First output: &quot;</span><span class="p">,</span> <span class="n">text0</span><span class="p">)</span>
<span class="linenos">224</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Loading new LLM instance...&quot;</span><span class="p">)</span>
<span class="linenos">225</span>
<span class="linenos">226</span> <span class="k">del</span> <span class="n">llm</span>
<span class="linenos">227</span>
<span class="linenos">228</span> <span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="n">model</span><span class="o">=</span><span class="n">model</span><span class="p">,</span>
<span class="linenos">229</span> <span class="n">backend</span><span class="o">=</span><span class="s2">&quot;pytorch&quot;</span><span class="p">,</span>
<span class="linenos">230</span> <span class="n">cuda_graph_config</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="linenos">231</span> <span class="n">kv_connector_config</span><span class="o">=</span><span class="n">kv_connector_config</span><span class="p">)</span>
<span class="linenos">232</span>
<span class="linenos">233</span> <span class="n">output</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">([</span><span class="n">test_text</span><span class="p">],</span> <span class="n">sampling_params</span><span class="p">)</span>
<span class="linenos">234</span> <span class="n">text1</span> <span class="o">=</span> <span class="n">output</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span>
<span class="linenos">235</span>
<span class="linenos">236</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Second output (using connector cache): &quot;</span><span class="p">,</span> <span class="n">text1</span><span class="p">)</span>
<span class="linenos">237</span>
<span class="linenos">238</span> <span class="k">assert</span> <span class="n">text0</span> <span class="o">==</span> <span class="n">text1</span>
<span class="linenos">239</span>
<span class="linenos">240</span> <span class="n">connector_cache_dir</span><span class="o">.</span><span class="n">cleanup</span><span class="p">()</span>
<span class="linenos">241</span>
<span class="linenos">242</span>
<span class="linenos">243</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="linenos">244</span> <span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="llm_speculative_decoding.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Speculative Decoding</p>
</div>
</a>
<a class="right-next"
href="llm_kv_cache_offloading.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">KV Cache Offloading</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<div class="bd-sidebar-secondary"></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on November 05, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/3111682">3111682</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>