TensorRT-LLMs/examples/layer_wise_benchmarks/run_single.py
Tailing Yuan f9c7786dc8
[None][feat] Add layer wise benchmarks (#8777)
Signed-off-by: Tailing Yuan <yuantailing@gmail.com>
2025-10-30 20:29:34 +08:00

160 lines
5.5 KiB
Python

import argparse
import numpy as np
import nvtx
import torch
import yaml
from tensorrt_llm._torch.autotuner import AutoTuner, autotune
from tensorrt_llm._torch.modules.multi_stream_utils import with_multi_stream
from tensorrt_llm._utils import local_mpi_rank, mpi_rank, mpi_world_size
from tensorrt_llm.tools.layer_wise_benchmarks.deepseekv3_runner import (
BalanceMethod, DeepSeekV3Runner)
def comma_separated_ints(s):
return [int(x) for x in s.split(",")]
# Parse cmdline
parser = argparse.ArgumentParser()
parser.add_argument("config_path", type=str)
parser.add_argument("--model", type=str, help="Pretrained model name or path")
parser.add_argument(
"--layer-indices",
type=comma_separated_ints,
help="Comma separated indices of layers, should be a contiguous range")
parser.add_argument("--run-type", type=str, choices=["CTX", "GEN"])
parser.add_argument("--scaled-from", type=int)
# KV cache related args
parser.add_argument("--tokens-per-block", type=int)
parser.add_argument("--max-seq-len", type=int)
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument("--enable-attention-dp",
action="store_true",
dest="enable_attention_dp")
group.add_argument("--no-enable-attention-dp",
action="store_false",
dest="enable_attention_dp")
parser.set_defaults(enable_attention_dp=None)
# Model init args
parser.add_argument("--max-num-tokens", type=int)
parser.add_argument("--moe-backend", type=str)
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument("--use-cuda-graph",
action="store_true",
dest="use_cuda_graph")
group.add_argument("--no-use-cuda-graph",
action="store_false",
dest="use_cuda_graph")
parser.set_defaults(use_cuda_graph=None)
# Per iteration args
parser.add_argument("--batch-size", type=int)
parser.add_argument("--seq-len-q", type=int)
parser.add_argument("--seq-len-kv-cache", type=int)
parser.add_argument("--balance-method", type=str)
parser.add_argument("--balance-ratio", type=float)
args = parser.parse_args()
with open(args.config_path) as f:
config = yaml.safe_load(f)
del args.config_path
for k, v in vars(args).items():
if v is None:
setattr(args, k, config[k])
print(args)
# MPI args
rank = mpi_rank()
world_size = mpi_world_size()
local_rank = local_mpi_rank()
torch.cuda.set_device(local_rank)
# Create KV cache manager
mapping = DeepSeekV3Runner.create_mapping(
enable_attention_dp=args.enable_attention_dp)
max_batch_size = 2048
kv_cache_manager = DeepSeekV3Runner.create_kv_cache_manager(
args.model,
mapping,
tokens_per_block=args.tokens_per_block,
max_batch_size=max_batch_size,
max_seq_len=args.max_seq_len,
layer_indices=args.layer_indices)
attn_workspace = torch.empty((0, ), device="cuda", dtype=torch.int8)
# Create other global objects
AutoTuner.get().clear_cache()
capture_stream = torch.cuda.Stream()
# Create Runner
runner = DeepSeekV3Runner(args.model,
mapping,
moe_backend=args.moe_backend,
layer_indices=args.layer_indices,
scaled_from=args.scaled_from,
max_seq_len=args.max_seq_len,
max_num_tokens=args.max_num_tokens,
use_cuda_graph=args.use_cuda_graph)
# Warm up
assert args.batch_size <= max_batch_size
assert args.seq_len_q + args.seq_len_kv_cache <= args.max_seq_len
run_pack = runner.create_run_pack(args.run_type,
batch_size=args.batch_size,
seq_len_q=args.seq_len_q,
seq_len_kv_cache=args.seq_len_kv_cache,
kv_cache_manager=kv_cache_manager,
attn_workspace=attn_workspace)
runner.replace_routing_method(balance_method=BalanceMethod[args.balance_method],
balance_ratio=args.balance_ratio)
capture_stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(capture_stream):
run_pack()
with autotune():
run_pack()
torch.cuda.current_stream().wait_stream(capture_stream)
torch.cuda.synchronize()
# Profile: capture graph and replay it
torch.cuda.cudart().cudaProfilerStart()
if args.use_cuda_graph:
with with_multi_stream(True):
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g,
stream=capture_stream,
capture_error_mode="global"):
run_pack()
warmup_times = 20
run_times = 100
events = [
torch.cuda.Event(enable_timing=True)
for _ in range(warmup_times + run_times + 1)
]
for i in range(warmup_times + run_times):
events[i].record()
with nvtx.annotate(
f"b={args.batch_size} s={args.seq_len_q} EP{world_size}"):
if args.use_cuda_graph:
g.replay()
else:
run_pack()
events[-1].record()
torch.cuda.synchronize()
# Print statistics
# Print before `cudaProfilerStop` to ensure messages are included in the profile
time_list = [
start.elapsed_time(stop) for start, stop in zip(events, events[1:])
]
time_list = time_list[warmup_times:]
print(f"[RANK {rank}]"
f" min {np.min(time_list) * 1000:.1f}"
f" max {np.max(time_list) * 1000:.1f}"
f" mean {np.mean(time_list) * 1000:.1f}"
f" median {np.median(time_list) * 1000:.1f}"
f" P90 {np.percentile(time_list, 90) * 1000:.1f}"
f" (us)")
torch.cuda.cudart().cudaProfilerStop()