TensorRT-LLMs/benchmarks/cpp/gptManagerBenchmark.cpp
2024-05-07 23:34:28 +08:00

1898 lines
73 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/batch_manager/GptManager.h"
#include "tensorrt_llm/batch_manager/inferenceRequest.h"
#include "tensorrt_llm/batch_manager/namedTensor.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/mpiUtils.h"
#include "tensorrt_llm/common/stringUtils.h"
#include "tensorrt_llm/executor/executor.h"
#include "tensorrt_llm/executor/tensor.h"
#include "tensorrt_llm/plugins/api/tllmPlugin.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/gptJsonConfig.h"
#include "tensorrt_llm/runtime/tllmLogger.h"
#include "tensorrt_llm/runtime/utils/numpyUtils.h"
#include "tensorrt_llm/runtime/worldConfig.h"
#include <chrono>
#include <cstdint>
#include <cxxopts.hpp>
#include <iostream>
#include <memory>
#include <nlohmann/json.hpp>
#include <numeric>
#include <optional>
#include <random>
#include <string>
#include <thread>
#include <utility>
using namespace tensorrt_llm::batch_manager;
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
namespace texec = tensorrt_llm::executor;
namespace mpi = tensorrt_llm::mpi;
namespace trt = nvinfer1;
namespace
{
using TensorPtr = ITensor::SharedPtr;
class LoraLib
{
public:
LoraLib(std::string const& loraDir)
: mLoraDir(loraDir)
, mBufferManager(std::make_shared<CudaStream>())
, mTaskPaths(parseDirPaths(mLoraDir))
, mLoras(readLoras(mTaskPaths))
{
}
TensorPtr getLoraWeights(uint64_t taskId) const
{
return mLoras.at(taskId).first;
}
TensorPtr getLoraConfig(uint64_t taskId) const
{
return mLoras.at(taskId).second;
}
void clear()
{
mLoras.clear();
}
std::map<uint64_t, std::pair<TensorPtr, TensorPtr>> const& getLoras()
{
return mLoras;
}
private:
std::string const mLoraDir;
BufferManager mBufferManager;
std::map<uint64_t, fs::path> mTaskPaths;
std::map<uint64_t, std::pair<TensorPtr, TensorPtr>> mLoras;
std::map<uint64_t, std::pair<TensorPtr, TensorPtr>> readLoras(std::map<uint64_t, fs::path> taskPaths)
{
std::map<uint64_t, std::pair<TensorPtr, TensorPtr>> loras;
for (auto const& [id, p] : taskPaths)
{
TensorPtr loraWeights
= utils::loadNpy(mBufferManager, (p / "model.lora_weights.npy").string(), MemoryType::kCPU);
TensorPtr loraConfig
= utils::loadNpy(mBufferManager, (p / "model.lora_config.npy").string(), MemoryType::kCPU);
loras.insert_or_assign(id, std::make_pair(loraWeights, loraConfig));
}
return loras;
}
std::map<uint64_t, fs::path> parseDirPaths(std::string const& loraDir)
{
std::map<uint64_t, fs::path> taskPaths;
if (loraDir == "")
{
return taskPaths;
}
for (auto const& entry : fs::recursive_directory_iterator(loraDir))
{
if (entry.is_directory())
{
auto taskId = parseId(entry.path());
taskPaths.insert_or_assign(taskId, entry.path());
}
}
return taskPaths;
}
uint64_t parseId(fs::path p)
{
auto fn = p.filename().string();
auto dashPos = fn.find_first_of("-");
std::string idStr = fn;
if (dashPos != std::string::npos)
{
auto idStr = fn.substr(0, dashPos);
}
uint64_t id = static_cast<uint64_t>(std::stoi(idStr));
return id;
}
};
struct BenchmarkParams
{
std::optional<SizeType> maxTokensInPagedKvCache{std::nullopt};
std::optional<float> freeGpuMemoryFraction{std::nullopt};
bool enableTrtOverlap{false};
bool enableBlockReuse{false};
bool enableChunkedContext{false};
bool streaming{false};
bool enableExpDelays{false};
std::optional<float> requestRate{std::nullopt};
int randomSeed = 430;
std::optional<int> maxAttentionWindow{std::nullopt};
// lora / peft params
std::optional<std::string> loraDir{std::nullopt};
SizeType loraDeviceNumModLayers{0};
size_t loraHostCacheSize{1024 * 2024 * 1024};
// KV cache block offloading
size_t kvHostCacheSize{0};
bool kvOnboardBlocks{true};
};
class InferenceRequestsAsyncSend
{
public:
InferenceRequestsAsyncSend(std::shared_ptr<tensorrt_llm::mpi::MpiComm> comm,
std::list<std::shared_ptr<InferenceRequest>> const& inferenceRequests, int const peer)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_LOG_DEBUG("start send requests to rank %d", peer);
mNumNewWorkItems = static_cast<int64_t>(inferenceRequests.size());
mRequest1 = comm->sendAsync(&mNumNewWorkItems, 1, mpi::MpiType::kINT64, peer, 0);
if (mNumNewWorkItems > 0)
{
for (auto const& infReq : inferenceRequests)
{
auto vpacked = infReq->serialize();
mPacked.push_back(static_cast<int64_t>(vpacked.size()));
mPacked.insert(mPacked.end(), std::move_iterator(vpacked.begin()), std::move_iterator(vpacked.end()));
}
mVecSize = static_cast<int64_t>(mPacked.size());
mRequest2 = comm->sendAsync(&mVecSize, 1, mpi::MpiType::kINT64, peer, 1);
mRequest3 = comm->sendAsync(mPacked.data(), mPacked.size(), mpi::MpiType::kINT64, peer, 2);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
~InferenceRequestsAsyncSend()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mRequest1->wait();
if (mRequest2)
mRequest2->wait();
if (mRequest3)
mRequest3->wait();
TLLM_LOG_DEBUG("end send requests");
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
private:
int64_t mNumNewWorkItems;
int64_t mVecSize;
std::vector<int64_t> mPacked;
std::shared_ptr<tensorrt_llm::mpi::MpiRequest> mRequest1;
std::shared_ptr<tensorrt_llm::mpi::MpiRequest> mRequest2;
std::shared_ptr<tensorrt_llm::mpi::MpiRequest> mRequest3;
};
} // namespace
void inferenceRequestsRecv(std::shared_ptr<tensorrt_llm::mpi::MpiComm> comm,
std::list<std::shared_ptr<InferenceRequest>>& inferenceRequests, int const peer)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_LOG_DEBUG("start recv requests from rank %d", peer);
int64_t numNewWorkItems = 0;
comm->recv(&numNewWorkItems, 1, mpi::MpiType::kINT64, peer, 0);
if (numNewWorkItems > 0)
{
std::vector<int64_t> packed;
int64_t vecSize;
comm->recv(&vecSize, 1, mpi::MpiType::kINT64, peer, 1);
packed.resize(vecSize);
comm->recv(packed.data(), packed.size(), mpi::MpiType::kINT64, peer, 2);
int64_t* packed_ptr = packed.data();
for (int64_t count = 0; count < numNewWorkItems; ++count)
{
int64_t n = *(packed_ptr++);
auto infReq = InferenceRequest::deserialize(packed_ptr);
packed_ptr += n;
inferenceRequests.emplace_back(infReq);
}
}
TLLM_LOG_DEBUG("end recv requests from rank %d", peer);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
// Class holding all infos regarding a single work item.
// This includes the original request, associated response factor
// and state.
class WorkItem
{
public:
WorkItem(std::shared_ptr<InferenceRequest> inferenceRequest, uint64_t requestId)
: mInferenceRequest(std::move(inferenceRequest))
, mRequestId(requestId)
{
}
[[nodiscard]] uint64_t requestId() const
{
return mRequestId;
}
[[nodiscard]] std::shared_ptr<InferenceRequest> getInferenceRequest() const
{
return mInferenceRequest;
}
private:
std::shared_ptr<InferenceRequest> mInferenceRequest;
uint64_t mRequestId;
};
/// @brief Thread-safe queue of work items
class WorkItemsQueue
{
public:
void clear()
{
std::lock_guard<std::mutex> lock(mMutex);
mPendingWorkItems.clear();
mPendingWorkItemsReqIds.clear();
mInProgressWorkItems.clear();
}
// Note: this function only be called under a lock
bool hasInProgressReqId(uint64_t const reqId) const
{
return (mInProgressWorkItems.find(reqId) != mInProgressWorkItems.end());
}
// Note: this function only be called under a lock
bool hasPendingReqId(uint64_t const reqId) const
{
return (mPendingWorkItemsReqIds.find(reqId) != mPendingWorkItemsReqIds.end());
}
bool empty() const
{
return mPendingWorkItems.empty() && mInProgressWorkItems.empty() && mPendingWorkItemsReqIds.empty();
}
/// @brief Add a new work item to the queue
/// Throws an error if requestId already exists
void push(std::shared_ptr<InferenceRequest> request, uint64_t requestId)
{
std::lock_guard<std::mutex> lock(mMutex);
TLLM_CHECK_WITH_INFO(!hasInProgressReqId(requestId) && !hasPendingReqId(requestId),
"requestId %lu is already in progress, request is ignored.", requestId);
auto workItem = std::make_shared<WorkItem>(request, requestId);
mPendingWorkItems.push_back(workItem);
mPendingWorkItemsReqIds.insert(workItem->requestId());
}
/// @brief Get a new work item from the queue, and move it to the list of
/// in progress work items if it hasn't been stopped
/// @return A tuple of the workItem and a boolean flag indicating if the work item
/// has been marked in progress
std::tuple<std::shared_ptr<WorkItem>, bool> pop()
{
std::lock_guard<std::mutex> lock(mMutex);
auto workItem = mPendingWorkItems.front();
mPendingWorkItems.pop_front();
mPendingWorkItemsReqIds.erase(workItem->requestId());
bool markedInProgress = false;
mInProgressWorkItems.emplace(workItem->requestId(), workItem);
markedInProgress = true;
return {workItem, markedInProgress};
}
size_t numPendingWorkItems() const
{
std::lock_guard<std::mutex> lock(mMutex);
return mPendingWorkItems.size();
}
size_t numInProgressWorkItems() const
{
std::lock_guard<std::mutex> lock(mMutex);
return mInProgressWorkItems.size();
}
size_t size() const
{
std::lock_guard<std::mutex> lock(mMutex);
return mPendingWorkItems.size() + mInProgressWorkItems.size();
}
/// @brief Mark a request as being finished
/// @param requestId
void markFinished(uint64_t const requestId)
{
std::lock_guard<std::mutex> lock(mMutex);
if (hasInProgressReqId(requestId))
{
mInProgressWorkItems.erase(requestId);
}
}
private:
/// Queue of work items
std::list<std::shared_ptr<WorkItem>> mPendingWorkItems;
/// requestIds of work items in the queue
std::set<uint64_t> mPendingWorkItemsReqIds;
/// work items currently in progress
std::unordered_map<uint64_t, std::shared_ptr<WorkItem>> mInProgressWorkItems;
mutable std::mutex mMutex;
};
struct BenchInfo
{
BenchInfo() = default;
BenchInfo(int _inputLength, int _outputLength, std::chrono::time_point<std::chrono::steady_clock> _start)
: inputLength(_inputLength)
, outputLength(_outputLength)
, start(_start)
{
}
int inputLength;
int outputLength;
std::chrono::time_point<std::chrono::steady_clock> start;
std::chrono::time_point<std::chrono::steady_clock> end;
std::chrono::time_point<std::chrono::steady_clock> firstTokenTs;
float latency{}; // millisecond
bool hasError{false};
float firstTokenLatency{};
std::optional<float> avgGenT2TLatency{};
bool firstTokenSeen{false};
};
class Recorder
{
using TensorPtr = ITensor::SharedPtr;
public:
explicit Recorder(std::string opCsvFile, bool streaming = false, std::string responsesJsonFile = "",
bool excludeInputInOutput = false)
: mOpCsvFile(std::move(opCsvFile))
, mStreaming(streaming)
, mRespJsonFile(std::move(responsesJsonFile))
, mOutputHasInput(!excludeInputInOutput)
{
}
void initialize()
{
mStart = std::chrono::steady_clock::now();
}
void finalize()
{
mEnd = std::chrono::steady_clock::now();
}
void recordStart(std::shared_ptr<InferenceRequest> request, uint64_t requestId)
{
auto const inputLength = request->getInputIds()->getSize();
auto const maxNewTokens = request->getMaxNewTokensNamed();
auto const& outputLengthTensor = maxNewTokens.tensor;
TLLM_CHECK_WITH_INFO(outputLengthTensor != nullptr && outputLengthTensor->getSize() > 0,
"Undefined scalar vector for %s", maxNewTokens.name.c_str());
auto const outputLength = *bufferCast<SizeType>(*outputLengthTensor);
auto const start = std::chrono::steady_clock::now();
mRequestBenchInfos[requestId] = BenchInfo(inputLength, outputLength, start);
}
// number of output tokens not calculated from output sequence here, instead set to max_output_len
// - if eos_id == -1 (default behavior), this is correct since output seq will have max permissible length.
// - However, if eos_id != -1, the token size of output sequence may be less than max_output_len, and token
// throughput may be inaccurate
void recordStart(SizeType inputLength, SizeType maxNewTokens, uint64_t requestId,
std::chrono::time_point<std::chrono::steady_clock> const& start)
{
mRequestBenchInfos[requestId] = BenchInfo(inputLength, maxNewTokens, start);
}
void recordEnd(uint64_t requestId, bool hasError)
{
mRequestBenchInfos[requestId].end = std::chrono::steady_clock::now();
mRequestBenchInfos[requestId].hasError = hasError;
}
void recordToken(uint64_t requestId)
{
if (!mRequestBenchInfos[requestId].firstTokenSeen)
{
mRequestBenchInfos[requestId].firstTokenTs = std::chrono::steady_clock::now();
mRequestBenchInfos[requestId].firstTokenSeen = true;
}
}
void recordEnd(uint64_t requestId, std::list<NamedTensor> const& responseTensors, bool hasError)
{
this->recordEnd(requestId, hasError);
if (mRespJsonFile.empty())
return;
int32_t outputSeqLen;
for (auto& tensor : responseTensors)
{
if (tensor.name == inference_request::kOutputIdsTensorName)
{
mResponseTensors[requestId] = tensor.tensor;
}
else if (tensor.name == inference_request::kSequenceLengthTensorName)
{
// Tensor of shape nBeams, and we only need the first one
outputSeqLen = *(bufferCast<int32_t>(*(tensor.tensor)));
if (mOutputHasInput)
{
int inputSeqLen = mRequestBenchInfos[requestId].inputLength;
outputSeqLen -= inputSeqLen;
}
mRequestBenchInfos[requestId].outputLength = outputSeqLen;
}
}
}
float calcPercentile(std::vector<float> const& latencies, int percentile)
{
int const index = static_cast<int>(std::ceil((percentile / 100.0) * latencies.size())) - 1;
return latencies[index];
}
void calculateLatencies()
{
for (auto& reqInfo : mRequestBenchInfos)
{
reqInfo.second.latency
= std::chrono::duration<float, std::milli>(reqInfo.second.end - reqInfo.second.start).count();
if (mStreaming)
{
reqInfo.second.firstTokenLatency
= std::chrono::duration<float, std::milli>(reqInfo.second.firstTokenTs - reqInfo.second.start)
.count();
if (reqInfo.second.outputLength > 1)
{
reqInfo.second.avgGenT2TLatency
= std::chrono::duration<float, std::milli>(reqInfo.second.end - reqInfo.second.firstTokenTs)
.count()
/ static_cast<float>(reqInfo.second.outputLength - 1);
}
}
}
}
void calculateMetrics()
{
calculateLatencies();
std::vector<float> reqLatencies;
std::vector<float> ftLatencies;
std::vector<float> genT2TLatencies;
int totalOutputTokens{0};
mNumErrorSamples = 0;
mNumSamples = 0;
for (auto reqInfo : mRequestBenchInfos)
{
if (!reqInfo.second.hasError)
{
reqLatencies.push_back(reqInfo.second.latency);
totalOutputTokens += reqInfo.second.outputLength;
if (mStreaming)
{
ftLatencies.push_back(reqInfo.second.firstTokenLatency);
if (reqInfo.second.avgGenT2TLatency)
{
genT2TLatencies.push_back(reqInfo.second.avgGenT2TLatency.value());
}
}
++mNumSamples;
}
else
{
++mNumErrorSamples;
}
}
mTotalLatency = std::chrono::duration<float, std::milli>(mEnd - mStart).count();
mSeqThroughput = mNumSamples / (mTotalLatency / 1000);
mTokenThroughput = totalOutputTokens / (mTotalLatency / 1000);
mAvgSeqLatency = std::accumulate(reqLatencies.begin(), reqLatencies.end(), 0.F) / reqLatencies.size();
std::sort(reqLatencies.begin(), reqLatencies.end());
mP99SeqLatency = calcPercentile(reqLatencies, 99);
mP90SeqLatency = calcPercentile(reqLatencies, 90);
mP50SeqLatency = calcPercentile(reqLatencies, 50);
mMaxSeqLatency = reqLatencies.back();
mMinSeqLatency = reqLatencies.front();
if (mStreaming)
{
mAvgFtLatency = std::accumulate(ftLatencies.begin(), ftLatencies.end(), 0.F) / ftLatencies.size();
std::sort(ftLatencies.begin(), ftLatencies.end());
mP99FtLatency = calcPercentile(ftLatencies, 99);
mP90FtLatency = calcPercentile(ftLatencies, 90);
mP50FtLatency = calcPercentile(ftLatencies, 50);
mMaxFtLatency = ftLatencies.back();
mMinFtLatency = ftLatencies.front();
if (!genT2TLatencies.empty())
{
mAvgGenT2TLatency
= std::accumulate(genT2TLatencies.begin(), genT2TLatencies.end(), 0.F) / genT2TLatencies.size();
std::sort(genT2TLatencies.begin(), genT2TLatencies.end());
mP99GenT2TLatency = calcPercentile(genT2TLatencies, 99);
mP90GenT2TLatency = calcPercentile(genT2TLatencies, 90);
mP50GenT2TLatency = calcPercentile(genT2TLatencies, 50);
mMaxGenT2TLatency = genT2TLatencies.back();
mMinGenT2TLatency = genT2TLatencies.front();
}
}
}
void report()
{
printf("[BENCHMARK] num_samples %d\n", mNumSamples);
printf("[BENCHMARK] num_error_samples %d\n", mNumErrorSamples);
printf("\n[BENCHMARK] num_samples %d\n", mNumSamples);
printf("[BENCHMARK] total_latency(ms) %.2f\n", mTotalLatency);
printf("[BENCHMARK] seq_throughput(seq/sec) %.2f\n", mSeqThroughput);
printf("[BENCHMARK] token_throughput(token/sec) %.2f\n\n", mTokenThroughput);
printf("[BENCHMARK] avg_sequence_latency(ms) %.2f\n", mAvgSeqLatency);
printf("[BENCHMARK] max_sequence_latency(ms) %.2f\n", mMaxSeqLatency);
printf("[BENCHMARK] min_sequence_latency(ms) %.2f\n", mMinSeqLatency);
printf("[BENCHMARK] p99_sequence_latency(ms) %.2f\n", mP99SeqLatency);
printf("[BENCHMARK] p90_sequence_latency(ms) %.2f\n", mP90SeqLatency);
printf("[BENCHMARK] p50_sequence_latency(ms) %.2f\n\n", mP50SeqLatency);
if (mStreaming)
{
printf("[BENCHMARK] avg_time_to_first_token(ms) %.2f\n", mAvgFtLatency);
printf("[BENCHMARK] max_time_to_first_token(ms) %.2f\n", mMaxFtLatency);
printf("[BENCHMARK] min_time_to_first_token(ms) %.2f\n", mMinFtLatency);
printf("[BENCHMARK] p99_time_to_first_token(ms) %.2f\n", mP99FtLatency);
printf("[BENCHMARK] p90_time_to_first_token(ms) %.2f\n", mP90FtLatency);
printf("[BENCHMARK] p50_time_to_first_token(ms) %.2f\n\n", mP50FtLatency);
printf("[BENCHMARK] avg_inter_token_latency(ms) %.2f\n", mAvgGenT2TLatency);
printf("[BENCHMARK] max_inter_token_latency(ms) %.2f\n", mMaxGenT2TLatency);
printf("[BENCHMARK] min_inter_token_latency(ms) %.2f\n", mMinGenT2TLatency);
printf("[BENCHMARK] p99_inter_token_latency(ms) %.2f\n", mP99GenT2TLatency);
printf("[BENCHMARK] p90_inter_token_latency(ms) %.2f\n", mP90GenT2TLatency);
printf("[BENCHMARK] p50_inter_token_latency(ms) %.2f\n\n", mP50GenT2TLatency);
}
}
void writeOpMetricsToCsv()
{
if (!mOpCsvFile.empty())
{
std::vector<std::string> headers = {"num_samples", "num_error_samples", "total_latency(ms)",
"seq_throughput(seq/sec)", "token_throughput(token/sec)", "avg_sequence_latency(ms)",
"max_sequence_latency(ms)", "min_sequence_latency(ms)", "p99_sequence_latency(ms)",
"p90_sequence_latency(ms)", "p50_sequence_latency(ms)"};
if (mStreaming)
{
std::vector<std::string> streamingHeaders
= {"avg_time_to_first_token(ms)", "max_time_to_first_token(ms)", "min_time_to_first_token(ms)",
"p99_time_to_first_token(ms)", "p90_time_to_first_token(ms)", "p50_time_to_first_token(ms)",
"avg_inter_token_latency(ms)", "max_inter_token_latency(ms)", "min_inter_token_latency(ms)",
"p99_inter_token_latency(ms)", "p90_inter_token_latency(ms)", "p50_inter_token_latency(ms)"};
headers.insert(headers.end(), streamingHeaders.begin(), streamingHeaders.end());
}
std::ofstream outputFile(mOpCsvFile);
if (outputFile.is_open())
{
for (auto const& header : headers)
{
outputFile << header << ",";
}
outputFile << "\n";
outputFile << mNumSamples << "," << mNumErrorSamples << "," << mTotalLatency << "," << mSeqThroughput
<< "," << mTokenThroughput << "," << mAvgSeqLatency << "," << mMaxSeqLatency << ","
<< mMinSeqLatency << "," << mP99SeqLatency << "," << mP90SeqLatency << "," << mP50SeqLatency;
if (mStreaming)
{
outputFile << "," << mAvgFtLatency << "," << mMaxFtLatency << "," << mMinFtLatency << ","
<< mP99FtLatency << "," << mP90FtLatency << "," << mP50FtLatency << ","
<< mAvgGenT2TLatency << "," << mMaxGenT2TLatency << "," << mMinGenT2TLatency << ","
<< mP99GenT2TLatency << "," << mP90GenT2TLatency << "," << mP50GenT2TLatency;
}
outputFile << "\n";
}
else
{
std::cerr << "Error opening file '" << mOpCsvFile << "' for writing.\n";
}
}
}
void dumpResponseSeqs()
{
if (mRespJsonFile.empty())
return;
nlohmann::json jsonResponses = nlohmann::json::array();
for (auto const& [respId, respTokensTensor] : mResponseTensors)
{
int inputLength = mRequestBenchInfos[respId].inputLength;
int outputLength = mRequestBenchInfos[respId].outputLength;
std::vector<int32_t> outputTokens(outputLength);
int32_t* outputToksBufferPtr = bufferCast<int32_t>(*respTokensTensor);
if (mOutputHasInput)
outputToksBufferPtr += inputLength;
std::copy(outputToksBufferPtr, outputToksBufferPtr + outputLength, outputTokens.begin());
nlohmann::json currResp;
currResp["response_id"] = respId;
currResp["response_tokens"] = outputTokens;
jsonResponses.push_back(currResp);
}
std::ofstream outFile(mRespJsonFile);
outFile << jsonResponses;
outFile.close();
}
private:
std::unordered_map<uint64_t, BenchInfo> mRequestBenchInfos;
std::chrono::time_point<std::chrono::steady_clock> mStart;
std::chrono::time_point<std::chrono::steady_clock> mEnd;
int mNumSamples{};
int mNumErrorSamples{};
float mTotalLatency{};
float mSeqThroughput{};
float mAvgSeqLatency{};
float mAvgGenT2TLatency{};
float mAvgFtLatency{};
float mTokenThroughput{};
float mP99SeqLatency{};
float mP90SeqLatency{};
float mP50SeqLatency{};
float mMaxSeqLatency{};
float mMinSeqLatency{};
float mP99FtLatency{};
float mP90FtLatency{};
float mP50FtLatency{};
float mMaxFtLatency{};
float mMinFtLatency{};
float mP99GenT2TLatency{};
float mP90GenT2TLatency{};
float mP50GenT2TLatency{};
float mMaxGenT2TLatency{};
float mMinGenT2TLatency{};
std::string mOpCsvFile;
bool mStreaming;
std::string mRespJsonFile;
std::unordered_map<uint64_t, TensorPtr> mResponseTensors;
bool mOutputHasInput;
}; // class Recorder
class ExecutorServer
{
public:
ExecutorServer(std::filesystem::path const& trtEnginePath, TrtGptModelType modelType, int32_t maxBeamWidth,
batch_scheduler::SchedulerPolicy schedulerPolicy, BenchmarkParams const& benchmarkParams,
std::shared_ptr<Recorder> recorder, std::chrono::milliseconds waitSleep,
std::optional<uint64_t> const staticEmulatedBatchSize, bool logIterationData)
: mRecorder(std::move(recorder))
, mWaitSleep(waitSleep)
, mStaticEmulatedBatchSize(staticEmulatedBatchSize)
, mActiveCount(0)
, mShutdown(false)
{
texec::SchedulerConfig schedulerConfig(batch_scheduler::batchManagerToExecSchedPolicy(schedulerPolicy));
texec::KvCacheConfig kvCacheConfig(benchmarkParams.enableBlockReuse, benchmarkParams.maxTokensInPagedKvCache,
benchmarkParams.maxAttentionWindow, std::nullopt, benchmarkParams.freeGpuMemoryFraction,
benchmarkParams.kvHostCacheSize, benchmarkParams.kvOnboardBlocks);
texec::PeftCacheConfig peftCacheConfig(0, benchmarkParams.loraDeviceNumModLayers, 8, 64, 4, 4, 4, 24, 8,
std::nullopt, benchmarkParams.loraHostCacheSize);
texec::ExecutorConfig executorConfig(
maxBeamWidth, schedulerConfig, kvCacheConfig, benchmarkParams.enableChunkedContext, true);
executorConfig.setPeftCacheConfig(peftCacheConfig);
executorConfig.setBatchingType(
modelType == TrtGptModelType::V1 ? texec::BatchingType::kSTATIC : texec::BatchingType::kINFLIGHT);
mExecutor = std::make_unique<texec::Executor>(trtEnginePath, texec::ModelType::kDECODER_ONLY, executorConfig);
if (logIterationData)
{
mCollectStatsThread = std::thread(&ExecutorServer::collectStats, this);
}
}
~ExecutorServer()
{
mShutdown = true;
if (mCollectStatsThread.joinable())
{
mCollectStatsThread.join();
}
}
void enqueue(std::vector<texec::Request> requests, bool warmup = false)
{
try
{
std::vector<SizeType> inputLengths;
std::vector<SizeType> maxNewTokens;
for (auto const& request : requests)
{
inputLengths.push_back(request.getInputTokenIds().size());
maxNewTokens.push_back(request.getMaxNewTokens());
}
auto const start = std::chrono::steady_clock::now();
auto reqIds = mExecutor->enqueueRequests(std::move(requests));
for (int req = 0; req < reqIds.size(); ++req)
{
if (!warmup)
{
mRecorder->recordStart(inputLengths.at(req), maxNewTokens.at(req), reqIds.at(req), start);
}
mActiveCount++;
}
}
catch (std::exception const& e)
{
TLLM_THROW("%s", e.what());
}
}
void waitForResponses(SizeType numRequests, bool warmup = false)
{
SizeType numFinished = 0;
while (mActiveCount || (numFinished < numRequests))
{
auto responses = mExecutor->awaitResponses(mWaitSleep);
for (auto const& response : responses)
{
auto const reqId = response.getRequestId();
if (!warmup && !response.hasError())
{
mRecorder->recordToken(reqId);
}
if (response.getResult().isFinal)
{
mActiveCount--;
numFinished++;
if (!warmup)
{
mRecorder->recordEnd(reqId, response.hasError());
}
}
}
}
}
void collectStats()
{
while (!mShutdown)
{
auto iterStats = mExecutor->getLatestIterationStats();
for (auto const& iterStat : iterStats)
{
TLLM_LOG_INFO(texec::JsonSerialization::toJsonStr(iterStat));
}
auto const waitSleep = std::chrono::milliseconds(50);
std::this_thread::sleep_for(waitSleep);
}
}
private:
std::unique_ptr<texec::Executor> mExecutor;
std::thread mCollectStatsThread;
std::shared_ptr<Recorder> mRecorder;
std::chrono::milliseconds mWaitSleep;
std::optional<int> mStaticEmulatedBatchSize;
std::atomic<uint64_t> mActiveCount;
std::atomic<bool> mShutdown;
}; // class ExecutorServer
class GptServer
{
public:
GptServer(std::filesystem::path const& trtEnginePath, TrtGptModelType modelType, SizeType maxBeamWidth,
batch_scheduler::SchedulerPolicy schedulerPolicy, TrtGptModelOptionalParams const& optionalParams,
std::shared_ptr<Recorder> recorder, std::optional<uint64_t> terminateReqId, std::chrono::milliseconds waitSleep,
std::optional<SizeType> const staticEmulatedBatchSize,
std::optional<std::chrono::milliseconds> const batchTimeout, bool logIterationData, bool excludeInputInOutput)
: mRecorder(std::move(recorder))
, mTerminateReqId(terminateReqId)
, mWaitSleep(waitSleep)
, mStaticEmulatedBatchSize(staticEmulatedBatchSize)
, mBatchTimeout(batchTimeout.value_or(std::chrono::milliseconds{0}))
, mActiveCount(0)
, mInferReqAsyncSndHdl(nullptr)
{
auto const jsonConfig = GptJsonConfig::parse(trtEnginePath / "config.json");
SizeType deviceCount{0};
TLLM_CUDA_CHECK(cudaGetDeviceCount(&deviceCount));
mWorldConfig = WorldConfig::mpi(deviceCount, jsonConfig.getTensorParallelism(),
jsonConfig.getPipelineParallelism(), optionalParams.deviceIds);
auto& comm = COMM_SESSION;
mCommTensorParallel = std::make_shared<tensorrt_llm::mpi::MpiComm>(
comm.split(mWorldConfig.getPipelineParallelRank(), mWorldConfig.getTensorParallelRank()));
mCommPipelineParallel = std::make_shared<tensorrt_llm::mpi::MpiComm>(
comm.split(mWorldConfig.getTensorParallelRank(), mWorldConfig.getPipelineParallelRank()));
ReturnBatchManagerStatsCallback iterationDataCallback = [this, logIterationData](std::string const& log)
{
if (logIterationData)
{
TLLM_LOG_INFO(log);
}
if (mStaticEmulatedBatchSize)
{
auto const json = nlohmann::json::parse(log);
auto const activeRequests = json["Active Request Count"];
TLLM_CHECK(activeRequests <= mStaticEmulatedBatchSize.value());
}
};
mBatchManager = std::make_shared<GptManager>(
trtEnginePath, modelType, maxBeamWidth, schedulerPolicy,
[this](int max_num_requests) { return getInferenceRequests(max_num_requests); },
[this](uint64_t requestId, std::list<NamedTensor> const& response_tensors, bool final_response,
std::string const& errMsg)
{ return sendResponse(requestId, response_tensors, final_response, errMsg); },
nullptr, iterationDataCallback, optionalParams, terminateReqId, std::nullopt, excludeInputInOutput);
}
~GptServer()
{
mWorkItemsQueue.clear();
}
std::string getLayerProfileInfo()
{
return mBatchManager->getLayerProfileInfo();
}
void setLayerProfiler()
{
return mBatchManager->setLayerProfiler();
}
void enqueue(std::shared_ptr<InferenceRequest> const& request)
{
TLLM_CHECK(request != nullptr);
auto const requestId = request->getRequestId();
if (requestId == mTerminateReqId)
{
mWorkItemsQueue.push(request, requestId);
return;
}
// Enqueue
try
{
mRecorder->recordStart(request, requestId);
mWorkItemsQueue.push(request, requestId);
}
catch (tc::TllmException const& e)
{
throw;
}
catch (std::exception const& e)
{
TLLM_THROW("%s", e.what());
}
}
void resetBatchDeadline()
{
mBatchDeadline = (std::chrono::steady_clock::now() + mBatchTimeout).time_since_epoch();
}
void waitForEmpty() const
{
while (!mWorkItemsQueue.empty())
{
std::this_thread::sleep_for(mWaitSleep);
}
}
void waitBatchManager() const
{
mBatchManager->waitUntilTerminate();
}
void shutdown() const
{
mBatchManager->shutdown();
}
// Return up to max_num_requests inference requests.
std::list<std::shared_ptr<InferenceRequest>> getInferenceRequests(int const max_num_requests)
{
mInferReqAsyncSndHdl = nullptr;
std::list<std::shared_ptr<InferenceRequest>> inferenceRequests;
auto& comm = COMM_SESSION;
if (max_num_requests > 0)
{
auto rank = comm.getRank();
if (rank == 0)
{
auto const numNewWorkItems = std::min(static_cast<int64_t>(mWorkItemsQueue.numPendingWorkItems()),
static_cast<int64_t>(max_num_requests));
bool const timeout = std::chrono::steady_clock::now().time_since_epoch() > mBatchDeadline.load();
bool readyForNextBatch = numNewWorkItems > 0 && timeout;
if (mStaticEmulatedBatchSize)
{
if (numNewWorkItems > 0)
{
bool const previousBatchFinished = mActiveCount == 0;
bool const haveEnoughForNextBatch = numNewWorkItems >= mStaticEmulatedBatchSize.value();
readyForNextBatch = previousBatchFinished && (timeout || haveEnoughForNextBatch);
}
if (numNewWorkItems == 0 || readyForNextBatch)
{
// Timeout should only begin once we have at least 1 pending request.
// Reset timeout when no requests are pending or we submit a new batch.
resetBatchDeadline();
}
}
if (readyForNextBatch)
{
// Only add a single batch at a time when emulating static batching
auto const numItemsToAdd = std::min(
numNewWorkItems, static_cast<int64_t>(mStaticEmulatedBatchSize.value_or(numNewWorkItems)));
mActiveCount += numItemsToAdd;
while (inferenceRequests.size() < numItemsToAdd)
{
auto [workItem, markedInProgress] = mWorkItemsQueue.pop();
if (markedInProgress)
{
inferenceRequests.emplace_back(workItem->getInferenceRequest());
}
else
{
auto warnStr = tc::fmtstr(
"request Id %lu has been stopped. Request is ignored.", workItem->requestId());
TLLM_LOG_WARNING(warnStr);
sendResponse(workItem->requestId(), {}, true, warnStr);
}
}
}
if (mWorldConfig.isTensorParallel())
{
auto numNewWorkItems = static_cast<int64_t>(inferenceRequests.size());
if (numNewWorkItems > 0 || mBatchManager->getNumActiveRequests() > 0)
{
mCommTensorParallel->bcast(&numNewWorkItems, 1, mpi::MpiType::kINT64, 0);
}
if (numNewWorkItems > 0)
{
std::vector<int64_t> packed;
for (auto const& infReq : inferenceRequests)
{
auto vpacked = infReq->serialize();
packed.push_back(static_cast<int64_t>(vpacked.size()));
packed.insert(
packed.end(), std::move_iterator(vpacked.begin()), std::move_iterator(vpacked.end()));
}
mCommTensorParallel->bcast(packed, 0);
}
}
}
else
{
// subordinate ranks hang until master rank sends work
if (mWorldConfig.isFirstPipelineParallelRank())
{
int64_t numNewWorkItems = 0;
mCommTensorParallel->bcast(&numNewWorkItems, 1, mpi::MpiType::kINT64, 0);
if (numNewWorkItems > 0)
{
std::vector<int64_t> packed;
mCommTensorParallel->bcast(packed, 0);
int64_t* packed_ptr = packed.data();
for (int64_t count = 0; count < numNewWorkItems; ++count)
{
int64_t n = *(packed_ptr++);
auto infReq = InferenceRequest::deserialize(packed_ptr);
packed_ptr += n;
inferenceRequests.emplace_back(infReq);
}
}
}
else
{
auto const peer = mWorldConfig.getPipelineParallelRank() - 1;
inferenceRequestsRecv(mCommPipelineParallel, inferenceRequests, peer);
}
}
if (!mWorldConfig.isLastPipelineParallelRank())
{
auto const peer = mWorldConfig.getPipelineParallelRank() + 1;
mInferReqAsyncSndHdl
= std::make_shared<InferenceRequestsAsyncSend>(mCommPipelineParallel, inferenceRequests, peer);
}
}
return inferenceRequests;
}
void sendResponse(uint64_t requestId, [[maybe_unused]] std::list<NamedTensor> const& response_tensors,
bool final_response, [[maybe_unused]] std::string const& errMsg)
{
// `response_tensors` contains `outputIds, sequenceLength, [contextLogits, generationLogits], logProbs,
// cumLogProbs`. `contextLogits, generationLogits` are optional, only contained when `gather_context_logits` and
// `gather_generation_logits` are enabled respectively. Or enable 'gather_all_token_logits' to enable both of
// them.
try
{
if (errMsg.empty())
{
mRecorder->recordToken(requestId);
}
if (final_response)
{
mWorkItemsQueue.markFinished(requestId);
mRecorder->recordEnd(requestId, response_tensors, !errMsg.empty());
mActiveCount--;
}
}
catch (std::exception const& e)
{
TLLM_LOG_ERROR("Failed to send response for requestId %lu\n%s", requestId, e.what());
}
}
private:
std::shared_ptr<GptManager> mBatchManager;
std::shared_ptr<Recorder> mRecorder;
WorkItemsQueue mWorkItemsQueue;
std::optional<uint64_t> mTerminateReqId;
std::chrono::milliseconds mWaitSleep;
std::optional<SizeType> mStaticEmulatedBatchSize;
std::chrono::milliseconds mBatchTimeout;
std::atomic<std::chrono::steady_clock::time_point::duration> mBatchDeadline;
std::atomic<uint64_t> mActiveCount;
WorldConfig mWorldConfig;
std::shared_ptr<tensorrt_llm::mpi::MpiComm> mCommTensorParallel;
std::shared_ptr<tensorrt_llm::mpi::MpiComm> mCommPipelineParallel;
std::shared_ptr<InferenceRequestsAsyncSend> mInferReqAsyncSndHdl;
}; // class GptServer
namespace
{
struct Sample
{
std::vector<int32_t> inputIds;
int32_t outputLen;
int32_t taskId;
};
using Samples = std::vector<Sample>;
Samples parseWorkloadJson(
std::filesystem::path const& datasetPath, int maxNumSamples, std::optional<SizeType> const maxPromptLen)
{
auto constexpr allowExceptions = true;
auto constexpr ignoreComments = true;
TLLM_CHECK_WITH_INFO(std::filesystem::exists(datasetPath), "File does not exist: %s", datasetPath.c_str());
std::ifstream jsonStream(datasetPath);
auto json = nlohmann::json::parse(jsonStream, nullptr, allowExceptions, ignoreComments);
Samples samples;
for (auto const& sample : json["samples"])
{
if (samples.size() >= maxNumSamples)
break;
int32_t taskId = sample.count("task_id") ? sample["task_id"].template get<int32_t>() : -1;
auto input_ids(sample["input_ids"].template get<std::vector<int32_t>>());
if (maxPromptLen && (input_ids.size() > maxPromptLen.value()))
{
input_ids.resize(maxPromptLen.value());
}
samples.emplace_back(Sample{std::move(input_ids), sample["output_len"], taskId});
}
return samples;
}
std::vector<double> generateRandomExponentialValues(int count, float lambda, int seed)
{
// Set a constant seed for reproducibility
std::mt19937 gen(seed);
// Create an exponential distribution object
std::exponential_distribution<double> distribution(lambda);
// Generate random numbers from the exponential distribution
std::vector<double> randomValues;
for (int i = 0; i < count; ++i)
{
double randomValue = distribution(gen);
randomValues.push_back(randomValue);
}
return randomValues;
}
std::vector<double> computeTimeDelays(BenchmarkParams const& benchmarkParams, int numDelays)
{
std::vector<double> timeDelays;
if (benchmarkParams.requestRate.has_value() && benchmarkParams.requestRate.value() > 0.0)
{
if (benchmarkParams.enableExpDelays)
{
timeDelays = generateRandomExponentialValues(
numDelays, benchmarkParams.requestRate.value(), benchmarkParams.randomSeed);
}
else
{
timeDelays.assign(numDelays, 1.0 / benchmarkParams.requestRate.value());
}
}
else
{
timeDelays.assign(numDelays, 0.0);
}
return timeDelays;
}
std::shared_ptr<InferenceRequest> makeRequest(std::uint64_t reqId, Sample const& sample, bool streaming,
ITensor::SharedPtr const& beamWidthTensor, ITensor::SharedPtr const& eosId, ITensor::SharedPtr const& padId,
BufferManager const& bufferManager, ITensor::SharedPtr const& returnContextLogits = nullptr,
ITensor::SharedPtr const& returnGenerationLogits = nullptr, ITensor::SharedPtr const& loraWeights = nullptr,
ITensor::SharedPtr const& loraConfig = nullptr)
{
auto request = std::make_shared<InferenceRequest>(reqId);
auto const& inputIds = sample.inputIds;
request->setInputIds(bufferManager.copyFrom(
inputIds, ITensor::makeShape({static_cast<SizeType>(inputIds.size())}), MemoryType::kCPU));
auto const requestOutputLen = sample.outputLen;
request->setMaxNewTokens(bufferManager.copyFrom(&requestOutputLen, ITensor::makeShape({1, 1}), MemoryType::kCPU));
request->setBeamWidth(beamWidthTensor);
if (eosId != nullptr)
{
request->setEndId(eosId);
}
if (padId != nullptr)
{
request->setPadId(padId);
}
if (returnContextLogits)
{
request->setReturnContextLogits(returnContextLogits);
}
if (returnGenerationLogits)
{
request->setReturnGenerationLogits(returnGenerationLogits);
}
if (sample.taskId >= 0)
{
uint64_t taskId = static_cast<uint64_t>(sample.taskId);
request->setLoraTaskId(bufferManager.copyFrom(&taskId, ITensor::makeShape({1}), MemoryType::kPINNED));
}
if (loraWeights)
{
request->setLoraWeights(loraWeights);
}
if (loraConfig)
{
request->setLoraConfig(loraConfig);
}
if (streaming)
{
request->setIsStreaming(true);
}
return request;
}
texec::Request makeExecutorRequest(Sample const& sample, SizeType const& beamWidth,
std::optional<SizeType> const& eosId, std::optional<SizeType> const& padId, bool streaming = false,
bool const& returnContextLogits = false, bool const& returnGenerationLogits = false,
std::optional<texec::LoraConfig> const& loraConfig = std::nullopt)
{
auto samplingConfig = texec::SamplingConfig{beamWidth};
auto outputConfig = texec::OutputConfig{false, returnContextLogits, returnGenerationLogits, false};
return texec::Request(sample.inputIds, sample.outputLen, streaming, samplingConfig, outputConfig, eosId, padId,
std::nullopt, // badWords
std::nullopt, // stopWords
std::nullopt, // embeddingBias
std::nullopt, // speculativeDecoding
std::nullopt, // pTuning
loraConfig);
}
void benchmarkGptManager(std::filesystem::path const& engineDir, TrtGptModelType modelType,
std::string const& datasetPath, std::string const& opCsvFile, int maxNumSamples, int beamWidth, int warmUp,
std::optional<TokenIdType> const& eosId, std::optional<TokenIdType> const& padId,
BenchmarkParams const& benchmarkParams, batch_scheduler::SchedulerPolicy schedulerPolicy,
std::chrono::milliseconds waitSleep, bool returnContextLogits, bool returnGenerationLogits,
std::optional<SizeType> const staticEmulatedBatchSize, std::optional<std::chrono::milliseconds> const batchTimeout,
bool logIterationData, bool excludeInputInOutput, std::string const& responsesJsonFile,
std::optional<SizeType> const maxPromptLen, bool dumpProfile)
{
TrtGptModelOptionalParams optionalParams;
if (benchmarkParams.maxTokensInPagedKvCache)
{
optionalParams.kvCacheConfig.maxTokens = benchmarkParams.maxTokensInPagedKvCache;
}
if (benchmarkParams.freeGpuMemoryFraction)
{
optionalParams.kvCacheConfig.freeGpuMemoryFraction = benchmarkParams.freeGpuMemoryFraction;
}
if (benchmarkParams.maxAttentionWindow)
{
optionalParams.kvCacheConfig.maxAttentionWindow = benchmarkParams.maxAttentionWindow;
}
optionalParams.kvCacheConfig.enableBlockReuse = benchmarkParams.enableBlockReuse;
optionalParams.enableChunkedContext = benchmarkParams.enableChunkedContext;
optionalParams.enableTrtOverlap = benchmarkParams.enableTrtOverlap;
optionalParams.peftCacheManagerConfig.hostCacheSize = benchmarkParams.loraHostCacheSize;
optionalParams.peftCacheManagerConfig.numDeviceModuleLayer = benchmarkParams.loraDeviceNumModLayers;
optionalParams.peftCacheManagerConfig.numPutWorkers = 4;
optionalParams.peftCacheManagerConfig.numEnsureWorkers = 4;
optionalParams.peftCacheManagerConfig.numCopyStreams = 4;
optionalParams.kvCacheConfig.hostCacheSize = benchmarkParams.kvHostCacheSize;
optionalParams.kvCacheConfig.onboardBlocks = benchmarkParams.kvOnboardBlocks;
auto const jsonConfig = GptJsonConfig::parse(engineDir / "config.json");
SizeType deviceCount{0};
TLLM_CUDA_CHECK(cudaGetDeviceCount(&deviceCount));
auto const worldConfig = WorldConfig::mpi(
deviceCount, jsonConfig.getTensorParallelism(), jsonConfig.getPipelineParallelism(), optionalParams.deviceIds);
BufferManager bufferManager{std::make_shared<CudaStream>()}; // the stream is not used
ITensor::SharedPtr beamWidthTensor{
bufferManager.copyFrom(&beamWidth, ITensor::makeShape({1}), MemoryType::kPINNED)};
// Load dataset
auto const samples = parseWorkloadJson(datasetPath, maxNumSamples, maxPromptLen);
auto const numSamples = samples.size();
int const maxBeamWidth = beamWidth;
auto recorder
= std::make_shared<Recorder>(opCsvFile, benchmarkParams.streaming, responsesJsonFile, excludeInputInOutput);
uint64_t terminateReqId = numSamples + 1;
auto gptServer
= std::make_shared<GptServer>(engineDir, modelType, maxBeamWidth, schedulerPolicy, optionalParams, recorder,
terminateReqId, waitSleep, staticEmulatedBatchSize, batchTimeout, logIterationData, excludeInputInOutput);
ITensor::SharedPtr eosIdTensor{
eosId ? bufferManager.copyFrom(&eosId.value(), ITensor::makeShape({1}), MemoryType::kPINNED) : nullptr};
ITensor::SharedPtr padIdTensor{
padId ? bufferManager.copyFrom(&padId.value(), ITensor::makeShape({1}), MemoryType::kPINNED) : nullptr};
ITensor::SharedPtr returnContextLogitsFlagTensor{returnContextLogits
? bufferManager.copyFrom(&returnContextLogits, ITensor::makeShape({1}), MemoryType::kPINNED)
: nullptr};
ITensor::SharedPtr returnGenerationLogitsFlagTensor{returnGenerationLogits
? bufferManager.copyFrom(&returnGenerationLogits, ITensor::makeShape({1}), MemoryType::kPINNED)
: nullptr};
if (worldConfig.getRank() == 0)
{
if (benchmarkParams.loraDir)
{
auto startLoraLoad = std::chrono::steady_clock::now();
LoraLib loras(benchmarkParams.loraDir.value());
SizeType reqId = 0;
for (auto const& [taskId, p] : loras.getLoras())
{
reqId++;
if (reqId == terminateReqId)
{
reqId++;
}
Sample s{std::vector<int32_t>{1, 2, 3, 4, 5}, 1, static_cast<int32_t>(taskId)};
auto r = makeRequest(reqId, s, benchmarkParams.streaming, beamWidthTensor, eosIdTensor, padIdTensor,
bufferManager, nullptr, nullptr, p.first, p.second);
gptServer->enqueue(r);
}
gptServer->waitForEmpty();
auto endLoraLoad = std::chrono::steady_clock::now();
printf("[BENCHMARK] time to preload LoRAs(ms) %.2f\n",
std::chrono::duration<float, std::milli>(endLoraLoad - startLoraLoad).count());
}
// Warm up
gptServer->resetBatchDeadline();
SizeType reqId = 0;
for (auto i = 0; i < warmUp; ++i)
{
++reqId;
if (i == terminateReqId)
++reqId;
auto request = makeRequest(
reqId, samples[0], benchmarkParams.streaming, beamWidthTensor, eosIdTensor, padIdTensor, bufferManager);
gptServer->enqueue(request);
}
gptServer->waitForEmpty();
// Time delay
auto timeDelays = computeTimeDelays(benchmarkParams, numSamples - 1);
// Benchmark
recorder->initialize();
gptServer->resetBatchDeadline();
for (std::size_t i = 0; i < numSamples; ++i)
{
auto request = makeRequest(i + 1, samples[i], benchmarkParams.streaming, beamWidthTensor, eosIdTensor,
padIdTensor, bufferManager, returnContextLogitsFlagTensor, returnGenerationLogitsFlagTensor);
gptServer->enqueue(request);
if (i < numSamples - 1)
{
auto delayInMs = static_cast<int>(timeDelays.at(i) * 1000);
std::chrono::milliseconds delay(delayInMs);
std::this_thread::sleep_for(delay);
}
}
gptServer->waitForEmpty();
recorder->finalize();
recorder->calculateMetrics();
recorder->report();
recorder->writeOpMetricsToCsv();
recorder->dumpResponseSeqs();
if (dumpProfile)
{
// Do per-layer profiling after normal benchmarking to avoid introducing perf overhead.
gptServer->resetBatchDeadline();
gptServer->setLayerProfiler();
for (std::size_t i = 0; i < numSamples; ++i)
{
auto request = makeRequest(i + 1, samples[i], benchmarkParams.streaming, beamWidthTensor, eosIdTensor,
padIdTensor, bufferManager, returnContextLogitsFlagTensor, returnGenerationLogitsFlagTensor);
gptServer->enqueue(request);
}
gptServer->waitForEmpty();
if (worldConfig.getRank() == 0)
{
printf("[BENCHMARK] Per layer performance profile\n%s\n", gptServer->getLayerProfileInfo().c_str());
}
}
// Send terminateReqId to terminate servers on all ranks
// Server on rank 0 will broadcast the terminate signal to other servers on multi-GPU cases
gptServer->enqueue(std::make_shared<InferenceRequest>(terminateReqId));
}
// Wait until benchmarking is done and batch manager is terminated
gptServer->waitBatchManager();
}
void benchmarkExecutor(std::filesystem::path const& engineDir, TrtGptModelType modelType,
std::string const& datasetPath, std::string const& opCsvFile, int maxNumSamples, int beamWidth, int warmUp,
std::optional<int32_t> const& eosId, std::optional<int32_t> const& padId, BenchmarkParams const& benchmarkParams,
batch_scheduler::SchedulerPolicy schedulerPolicy, std::chrono::milliseconds waitSleep, bool returnContextLogits,
bool returnGenerationLogits, std::optional<int> const staticEmulatedBatchSize, bool logIterationData,
std::optional<SizeType> const maxPromptLen)
{
auto const& world = tensorrt_llm::mpi::MpiComm::world();
auto worldRank = world.getRank();
// Load dataset
auto const samples = parseWorkloadJson(datasetPath, maxNumSamples, maxPromptLen);
auto const numSamples = samples.size();
auto recorder = std::make_shared<Recorder>(opCsvFile, benchmarkParams.streaming);
auto executorServer = std::make_shared<ExecutorServer>(engineDir, modelType, beamWidth, schedulerPolicy,
benchmarkParams, recorder, waitSleep, staticEmulatedBatchSize, logIterationData);
if (worldRank == 0)
{
if (benchmarkParams.loraDir)
{
auto startLoraLoad = std::chrono::steady_clock::now();
LoraLib loras(benchmarkParams.loraDir.value());
std::vector<texec::Request> requests;
for (auto& [taskId, p] : loras.getLoras())
{
texec::LoraConfig loraConfig(
taskId, texec::detail::ofITensor(p.first), texec::detail::ofITensor(p.second));
Sample s{std::vector<int32_t>{1, 2, 3, 4, 5}, 1, static_cast<int32_t>(taskId)};
requests.emplace_back(makeExecutorRequest(s, beamWidth, eosId, padId, false, false, false, loraConfig));
}
executorServer->enqueue(std::move(requests), true);
executorServer->waitForResponses(loras.getLoras().size(), true);
auto endLoraLoad = std::chrono::steady_clock::now();
printf("[BENCHMARK] time to preload LoRAs(ms) %.2f\n",
std::chrono::duration<float, std::milli>(endLoraLoad - startLoraLoad).count());
}
// Warm up
{
std::vector<texec::Request> requests;
for (auto i = 0; i < warmUp; ++i)
{
requests.emplace_back(makeExecutorRequest(samples[0], beamWidth, eosId, padId,
benchmarkParams.streaming, returnContextLogits, returnGenerationLogits));
}
executorServer->enqueue(std::move(requests), true);
executorServer->waitForResponses(warmUp, true);
}
// Benchmark
{
auto timeDelays = computeTimeDelays(benchmarkParams, numSamples - 1);
// Create requests
recorder->initialize();
std::vector<texec::Request> requests;
for (std::size_t i = 0; i < numSamples; ++i)
{
std::optional<texec::LoraConfig> loraConfig;
if (samples[i].taskId >= 0)
{
loraConfig = texec::LoraConfig(samples[i].taskId);
}
requests.emplace_back(makeExecutorRequest(samples[i], beamWidth, eosId, padId,
benchmarkParams.streaming, returnContextLogits, returnGenerationLogits, loraConfig));
}
bool hasDelay
= std::any_of(timeDelays.begin(), timeDelays.end(), [](auto const& delay) { return delay > 0.0; });
if (hasDelay && staticEmulatedBatchSize)
{
TLLM_THROW("Executor benchmark doesn't support delays with emulated static batch sizes");
}
if (!hasDelay)
{
if (!staticEmulatedBatchSize)
{
executorServer->enqueue(std::move(requests));
executorServer->waitForResponses(numSamples);
}
else
{
SizeType numRequests = requests.size();
SizeType maxBatchSize = staticEmulatedBatchSize.value();
for (SizeType req = 0; req < numRequests; req += maxBatchSize)
{
auto batchSize = std::min(maxBatchSize, numRequests - req);
std::vector<texec::Request> requestsBatch(std::make_move_iterator(requests.begin() + req),
std::make_move_iterator(requests.begin() + req + batchSize));
// Enqueue in batches
executorServer->enqueue(std::move(requestsBatch));
// Wait for current batch to be done
executorServer->waitForResponses(batchSize);
}
}
}
else
{
// Launch a thread that will wait for responses
std::thread waitThread(
[numSamples, executorServer]() { executorServer->waitForResponses(numSamples); });
// Enqueue requests one by one
for (std::size_t i = 0; i < numSamples; ++i)
{
executorServer->enqueue({std::move(requests.at(i))});
if (i < numSamples - 1)
{
std::this_thread::sleep_for(
std::chrono::milliseconds(static_cast<int>(timeDelays.at(i) * 1000)));
}
}
waitThread.join();
}
}
recorder->finalize();
recorder->calculateMetrics();
recorder->report();
recorder->writeOpMetricsToCsv();
// Send terminateReqId to terminate servers on all ranks
// Sever on rank 0 will broadcast the terminate signal to other servers on multi-GPU cases
// gptServer->enqueue(std::make_shared<InferenceRequest>(terminateReqId));
}
}
} // namespace
int main(int argc, char* argv[])
{
cxxopts::Options options(
"TensorRT-LLM BatchManager Benchmark", "TensorRT-LLM BatchManager Benchmark for GPT and GPT-like models.");
options.add_options()("h,help", "Print usage");
options.add_options()("engine_dir", "Directory that store the engines.", cxxopts::value<std::string>());
options.add_options()(
"api", "API type: gptManager or executor.", cxxopts::value<std::string>()->default_value("gptManager"));
options.add_options()("type", "Batching type: IFB, UIFB (unfused IFB) or V1 (non-IFB) batching.",
cxxopts::value<std::string>()->default_value("IFB"));
options.add_options()("dataset", "Dataset that is used for benchmarking BatchManager.",
cxxopts::value<std::string>()->default_value(""));
options.add_options()(
"output_csv", "Write output metrics to CSV", cxxopts::value<std::string>()->default_value(""));
options.add_options()("max_num_samples", "maximum number of samples to use from dataset/generate",
cxxopts::value<int>()->default_value("100000"));
options.add_options()(
"beam_width", "Specify beam width you want to benchmark.", cxxopts::value<int>()->default_value("1"));
options.add_options()(
"warm_up", "Specify warm up iterations before benchmark starts.", cxxopts::value<int>()->default_value("2"));
options.add_options()(
"eos_id", "Specify the end-of-sequence token id.", cxxopts::value<TokenIdType>()->default_value("-1"));
options.add_options()("pad_id", "Specify the padding token id.", cxxopts::value<TokenIdType>());
options.add_options()("max_tokens_in_paged_kvcache", "Max tokens in paged K-V Cache.", cxxopts::value<int>());
options.add_options()("max_attention_window", "Max KV cache length per sequence", cxxopts::value<int>());
options.add_options()(
"random_seed", "integer random seed for exponential time delays.", cxxopts::value<int>()->default_value("420"));
options.add_options()(
"kv_cache_free_gpu_mem_fraction", "K-V Cache Free Gpu Mem Fraction.", cxxopts::value<float>());
options.add_options()("request_rate",
"request rate in reqs/sec. Skipping this arg or negative value will trigger offline/0-delay.",
cxxopts::value<float>());
options.add_options()("enable_trt_overlap", "Overlap TRT context preparation and execution",
cxxopts::value<bool>()->default_value("false"));
options.add_options()("enable_exp_delays", "Enables exponential delay distr to mimic real world request arrival",
cxxopts::value<bool>()->default_value("false"));
options.add_options()("streaming", "Operate in streaming mode", cxxopts::value<bool>()->default_value("false"));
options.add_options()(
"enable_kv_cache_reuse", "Enables the KV cache reuse.", cxxopts::value<bool>()->default_value("false"));
options.add_options()("enable_chunked_context", "Whether to enable context chunking.",
cxxopts::value<bool>()->default_value("false"));
options.add_options()(
"return_context_logits", "Whether to return context logits.", cxxopts::value<bool>()->default_value("false"));
options.add_options()("return_generation_logits", "Whether to return generation logits.",
cxxopts::value<bool>()->default_value("false"));
options.add_options()("scheduler_policy", "Choose scheduler policy between max_utilization/guaranteed_no_evict.",
cxxopts::value<std::string>()->default_value("guaranteed_no_evict"));
options.add_options()("first_batch_delay",
"Delay before submitting the first batch of requests. This can be used to increase the size of the first "
"batch.",
cxxopts::value<int32_t>());
options.add_options()("static_emulated_batch_size",
"Emulate static batching performance with the provided batch size.", cxxopts::value<SizeType>());
options.add_options()("static_emulated_timeout",
"Timeout (ms) before launching a partial batch in emulated static batching mode",
cxxopts::value<int32_t>()->default_value("500"));
options.add_options()("log_level", "Choose log level between verbose/info/warning/error/internal_error.",
cxxopts::value<std::string>()->default_value("error"));
options.add_options()("log_iteration_data", "On each decoder iteration, print batch state metadata.",
cxxopts::value<bool>()->default_value("false"));
options.add_options()("wait_sleep", "Specify how many milliseconds to sleep each iteration of waitForEmpty loop.",
cxxopts::value<int>()->default_value("25"));
options.add_options()("lora_dir", "Directory containing LoRAs", cxxopts::value<std::string>()->default_value(""));
options.add_options()("lora_host_cache_bytes", "LoRA host cache memory in bytes", cxxopts::value<size_t>());
options.add_options()("lora_num_device_mod_layers", "LoRA number 1d cache rows", cxxopts::value<int>());
options.add_options()("kv_host_cache_bytes",
"Size of secondary memory pool used for offloading kv cache blocks (in bytes).",
cxxopts::value<size_t>()->default_value("0"));
options.add_options()("kv_dont_onboard_blocks",
"If offloaded blocks should be onboarded to primary memory before reuse",
cxxopts::value<bool>()->default_value("false"));
options.add_options()("exclude_input_in_output_seq",
"When enabled, GptManager will exclude the input sequence from output. (Only works if --api is gptManager)",
cxxopts::value<bool>());
options.add_options()("responses_json_file",
"When specified, dumps the responses to JSON file. (only works if --api is gptManager)",
cxxopts::value<std::string>()->default_value(""));
options.add_options()(
"max_prompt_len", "Truncate all prompts from dataset to the length specified.", cxxopts::value<SizeType>());
options.add_options()("dump_profile", "Print profile information per layer.", cxxopts::value<bool>());
auto result = options.parse(argc, argv);
if (result.count("help"))
{
std::cout << options.help() << std::endl;
return 0;
}
// Argument: Engine directory
if (!result.count("engine_dir"))
{
std::cout << options.help() << std::endl;
TLLM_LOG_ERROR("Please specify engine directory.");
return 1;
}
// Argument: API
auto const api = result["api"].as<std::string>();
// Argument: Batching Type
auto const type = result["type"].as<std::string>();
TrtGptModelType modelType{TrtGptModelType::V1};
if (type == "V1")
{
modelType = TrtGptModelType::V1;
}
else if (type == "UIFB")
{
modelType = TrtGptModelType::InflightBatching;
}
else if (type == "IFB")
{
modelType = TrtGptModelType::InflightFusedBatching;
}
else
{
TLLM_LOG_ERROR("Unexpected batching type: %s", type.c_str());
return 1;
}
// Argument: Dataset
auto const datasetPath = result["dataset"].as<std::string>();
auto const maxNumSamples = result["max_num_samples"].as<int>();
// Argument: Output metrics CSV
auto const opCsvFile = result["output_csv"].as<std::string>();
// Argument: beam width
auto const beamWidth = result["beam_width"].as<int>();
// Argument: wait_sleep
auto const waitSleep = std::chrono::milliseconds(result["wait_sleep"].as<int>());
BenchmarkParams benchmarkParams;
// Argument: Max tokens in paged K-V Cache
if (result.count("max_tokens_in_paged_kvcache"))
{
benchmarkParams.maxTokensInPagedKvCache = result["max_tokens_in_paged_kvcache"].as<int>();
}
// Argument: Max KV cache length
if (result.count("max_attention_window"))
{
benchmarkParams.maxAttentionWindow = result["max_attention_window"].as<int>();
}
if (result.count("random_seed"))
{
benchmarkParams.randomSeed = result["random_seed"].as<int>();
}
// Argument: K-V Cache Free Gpu Mem Fraction
if (result.count("kv_cache_free_gpu_mem_fraction"))
{
benchmarkParams.freeGpuMemoryFraction = result["kv_cache_free_gpu_mem_fraction"].as<float>();
}
// Argument: Enable TRT overlap
benchmarkParams.enableTrtOverlap = result["enable_trt_overlap"].as<bool>();
// Argument: Enable KV cache reuse
benchmarkParams.enableBlockReuse = result["enable_kv_cache_reuse"].as<bool>();
// Argument: streaming
benchmarkParams.streaming = result["streaming"].as<bool>();
// Argument: request rate
if (result.count("request_rate"))
{
benchmarkParams.requestRate = result["request_rate"].as<float>();
}
benchmarkParams.enableExpDelays = result["enable_exp_delays"].as<bool>();
// Argument: Enable batch stats output
bool logIterationData = result["log_iteration_data"].as<bool>();
// Argument: Enable chunked context
benchmarkParams.enableChunkedContext = result["enable_chunked_context"].as<bool>();
// Argument: Enable return context logits
bool returnContextLogits = result["return_context_logits"].as<bool>();
// Argument: Enable return context logits
bool returnGenerationLogits = result["return_generation_logits"].as<bool>();
if (result.count("lora_dir"))
{
benchmarkParams.loraDir = result["lora_dir"].as<std::string>();
}
if (result.count("lora_host_cache_bytes"))
{
benchmarkParams.loraHostCacheSize = result["lora_host_cache_bytes"].as<size_t>();
}
if (result.count("lora_num_device_mod_layers"))
{
benchmarkParams.loraDeviceNumModLayers = result["lora_num_device_mod_layers"].as<SizeType>();
}
// Argument: How many KV cache blocks (as fraction of number of GPU kv cache blocks).
benchmarkParams.kvHostCacheSize = result["kv_host_cache_bytes"].as<size_t>();
// Argument: If offloaded blocks should be onboarded to primary memory before they are reused.
benchmarkParams.kvOnboardBlocks = !result["kv_dont_onboard_blocks"].as<bool>();
std::optional<TokenIdType> padId;
// Argument: Padding token id
if (result.count("pad_id"))
{
padId = result["pad_id"].as<TokenIdType>();
}
// Argument: End-of-sentence token id
std::optional<TokenIdType> eosId = result["eos_id"].as<TokenIdType>();
std::optional<std::chrono::milliseconds> batchTimeout;
// Argument: first_batch_delay
if (result.count("first_batch_delay"))
{
batchTimeout = std::chrono::milliseconds{result["first_batch_delay"].as<int32_t>()};
}
std::optional<SizeType> staticEmulatedBatchSize;
// Argument: Static emulated batch size
if (result.count("static_emulated_batch_size"))
{
staticEmulatedBatchSize = result["static_emulated_batch_size"].as<SizeType>();
batchTimeout = std::chrono::milliseconds{result["static_emulated_timeout"].as<int32_t>()};
}
// Argument: Scheduler policy
batch_scheduler::SchedulerPolicy schedulerPolicy;
auto const schedulerPolicyArg = result["scheduler_policy"].as<std::string>();
if (schedulerPolicyArg == "max_utilization")
{
schedulerPolicy = batch_scheduler::SchedulerPolicy::MAX_UTILIZATION;
}
else if (schedulerPolicyArg == "guaranteed_no_evict")
{
schedulerPolicy = batch_scheduler::SchedulerPolicy::GUARANTEED_NO_EVICT;
}
else
{
TLLM_LOG_ERROR("Unexpected scheduler policy: " + schedulerPolicyArg);
return 1;
}
// Argument: max_prompt_len
std::optional<SizeType> maxPromptLen;
if (result.count("max_prompt_len"))
{
maxPromptLen = result["max_prompt_len"].as<SizeType>();
}
// Argument: Log level
auto logger = std::make_shared<TllmLogger>();
auto const logLevel = result["log_level"].as<std::string>();
if (logLevel == "verbose")
{
logger->setLevel(trt::ILogger::Severity::kVERBOSE);
}
else if (logLevel == "info")
{
logger->setLevel(trt::ILogger::Severity::kINFO);
}
else if (logLevel == "warning")
{
logger->setLevel(trt::ILogger::Severity::kWARNING);
}
else if (logLevel == "error")
{
logger->setLevel(trt::ILogger::Severity::kERROR);
}
else if (logLevel == "internal_error")
{
logger->setLevel(trt::ILogger::Severity::kINTERNAL_ERROR);
}
else
{
TLLM_LOG_ERROR("Unexpected log level: " + logLevel);
return 1;
}
// Argument: dump profile
bool dumpProfile = result["dump_profile"].as<bool>();
initTrtLlmPlugins(logger.get());
if (api == "gptManager")
{
try
{
benchmarkGptManager(result["engine_dir"].as<std::string>(), modelType, datasetPath, opCsvFile,
maxNumSamples, beamWidth, result["warm_up"].as<int>(), eosId, padId, benchmarkParams, schedulerPolicy,
waitSleep, returnContextLogits, returnGenerationLogits, staticEmulatedBatchSize, batchTimeout,
logIterationData, result["exclude_input_in_output_seq"].as<bool>(),
result["responses_json_file"].as<std::string>(), maxPromptLen, dumpProfile);
}
catch (std::exception const& e)
{
TLLM_LOG_ERROR(e.what());
return 1;
}
}
else if (api == "executor")
{
try
{
benchmarkExecutor(result["engine_dir"].as<std::string>(), modelType, datasetPath, opCsvFile, maxNumSamples,
beamWidth, result["warm_up"].as<int>(), eosId, padId, benchmarkParams, schedulerPolicy, waitSleep,
returnContextLogits, returnGenerationLogits, staticEmulatedBatchSize, logIterationData, maxPromptLen);
}
catch (std::exception const& e)
{
TLLM_LOG_ERROR(e.what());
return 1;
}
}
else
{
TLLM_LOG_ERROR("api parameter must be gptManager or executor");
return 1;
}
return 0;
}