TensorRT-LLMs/cpp/tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImpl.h
2024-05-07 23:34:28 +08:00

85 lines
2.8 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <memory>
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/xqaParams.h"
#include "tensorrt_llm/kernels/kvCacheUtils.h"
namespace tensorrt_llm
{
namespace kernels
{
// Forward declaration to avoid cyclic dependency.
class DecoderXQARunner;
/**
* The underlying XQA implementation called from DecoderXQARunner.
*
* We need this layer of abstraction for abstracting out implementation details. Two possible implementations:
* 1. Precompiled, i.e. kernels are compiled and saved as cubins in advance.
* 2. JIT, i.e. kernels are compiled on the fly via NVRTC.
*/
class DecoderXQAImpl
{
public:
// TODO(minwei): shouldUse()/prepare() should be templated with KVCacheBuffer.
// Whether it is beneficial to use this XQA codepath.
//
// forConfigurePlugin: whether this method is called in configure plugin phase.
virtual bool shouldUse(XQAParams const& xqaParams, bool forConfigurePlugin) = 0;
// Prepares for the kernel running. Must be called before calling run.
virtual void prepare(XQAParams const& xqa_params) = 0;
// Run XQA kernel with KVCacheBuffer.
//
// Sub-classes should implement runWithKVLinearBuffer and runWithKVBlockArray.
template <typename KVCacheBuffer>
void run(XQAParams const& xqa_params, KVCacheBuffer const& kv_cache_buffer, cudaStream_t const& stream);
enum class ImplType
{
kPrecompiled = 0,
kJIT = 1,
};
// Needs runner pointer for accessing resources in DecoderXQARunner class.
static std::unique_ptr<DecoderXQAImpl> create(DecoderXQARunner* runner, ImplType implType);
protected:
DecoderXQAImpl(DecoderXQARunner* runner)
: mRunner(runner)
{
}
virtual void runWithKVLinearBuffer(
XQAParams const& xqa_params, KVLinearBuffer const& kv_linear_buffer, cudaStream_t const& stream)
= 0;
virtual void runWithKVBlockArray(
XQAParams const& xqa_params, KVBlockArray const& kv_block_array, cudaStream_t const& stream)
= 0;
DecoderXQARunner* mRunner;
};
enum class XQAKernelType : int32_t
{
kAMPERE_WARP_SPECIALIZED = 0,
kHOPPER_WARP_SPECIALIZED = 1
};
} // namespace kernels
} // namespace tensorrt_llm