TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/cacheTransBuffer.cpp
Chuang Zhu ffc0b8f5da
Cache transceiver support VSWA (#5505)
Signed-off-by: ShiXiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
Signed-off-by: Chuang Zhu <111838961+chuangz0@users.noreply.github.com>
Co-authored-by: ShiXiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2025-07-05 01:18:42 +09:00

479 lines
18 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cacheTransBuffer.h"
#include "tensorrt_llm/common/envUtils.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/opUtils.h"
#include "tensorrt_llm/executor/executor.h"
#include <NvInferRuntimeBase.h>
#include <mutex>
namespace tensorrt_llm::batch_manager::kv_cache_manager
{
class FabricMemory::Impl
{
public:
Impl(size_t size)
: mSize(size)
{
TLLM_CUDA_CHECK(cudaGetDevice(&mDeviceIdx));
CUmemAllocationHandleType const handle_type = CU_MEM_HANDLE_TYPE_FABRIC;
CUmemAllocationProp prop = {};
prop.requestedHandleTypes = handle_type;
prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = mDeviceIdx;
prop.allocFlags.gpuDirectRDMACapable = 1;
size_t granularity{0};
TLLM_CU_CHECK(cuMemGetAllocationGranularity(&granularity, &prop, CU_MEM_ALLOC_GRANULARITY_MINIMUM));
mGranularity = granularity;
mAllocSize = (size + granularity - 1) / granularity * granularity;
TLLM_CU_CHECK(cuMemCreate(&mHandle, mAllocSize, &prop, 0));
TLLM_CU_CHECK(cuMemAddressReserve(&mDevicePtr, mAllocSize, mGranularity, 0, 0));
mPtr = reinterpret_cast<void*>(mDevicePtr);
CUmemAccessDesc accessDesc = {};
accessDesc.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
accessDesc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
accessDesc.location.id = mDeviceIdx;
TLLM_CU_CHECK(cuMemMap(mDevicePtr, mAllocSize, 0, mHandle, 0));
TLLM_CU_CHECK(cuMemSetAccess(mDevicePtr, mAllocSize, &accessDesc, 1));
TLLM_LOG_DEBUG("FabricMemory::Impl::Impl mAllocSize:%ld", mAllocSize);
}
~Impl()
{
TLLM_LOG_DEBUG("FabricMemory::Impl::~Impl mAllocSize:%ld", mAllocSize);
TLLM_CU_CHECK(cuMemUnmap(mDevicePtr, mAllocSize));
TLLM_CU_CHECK(cuMemRelease(mHandle));
TLLM_CU_CHECK(cuMemAddressFree(mDevicePtr, mAllocSize));
}
[[nodiscard]] void* getPtr() const
{
return mPtr;
}
[[nodiscard]] size_t getSize() const
{
return mSize;
}
private:
size_t mSize;
size_t mAllocSize;
size_t mGranularity;
void* mPtr;
CUdeviceptr mDevicePtr;
CUmemGenericAllocationHandle mHandle;
int mDeviceIdx;
};
FabricMemory::FabricMemory(size_t size)
: pImpl(std::make_unique<Impl>(size))
{
}
FabricMemory::~FabricMemory() = default;
FabricMemory::FabricMemory(FabricMemory&&) noexcept = default;
FabricMemory& FabricMemory::operator=(FabricMemory&&) noexcept = default;
void* FabricMemory::getPtr() const
{
return pImpl->getPtr();
}
size_t FabricMemory::getSize() const
{
return pImpl->getSize();
}
size_t FabricMemory::getAlignedSize(size_t size)
{
auto alingedSizeFun = []()
{
int deviceIdx = -1;
TLLM_CUDA_CHECK(cudaGetDevice(&deviceIdx));
CUmemAllocationHandleType const handle_type = CU_MEM_HANDLE_TYPE_FABRIC;
CUmemAllocationProp prop = {};
prop.requestedHandleTypes = handle_type;
prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = deviceIdx;
prop.allocFlags.gpuDirectRDMACapable = 1;
size_t granularity{0};
TLLM_CU_CHECK(cuMemGetAllocationGranularity(&granularity, &prop, CU_MEM_ALLOC_GRANULARITY_MINIMUM));
return granularity;
};
static size_t granularity = alingedSizeFun();
return (size + granularity - 1) / granularity * granularity;
}
bool FabricMemory::supportFbaricMemory()
{
#ifdef __aarch64__
auto support_fun = []()
{
int fabric_handle_supported{0};
int gpu_direct_rdma_with_cuda_vmm_supported{0};
int deviceIdx = 0;
TLLM_CUDA_CHECK(cudaGetDevice(&deviceIdx));
CUresult ret0 = cuDeviceGetAttribute(
&fabric_handle_supported, CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_FABRIC_SUPPORTED, deviceIdx);
CUresult ret1 = cuDeviceGetAttribute(&gpu_direct_rdma_with_cuda_vmm_supported,
CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_WITH_CUDA_VMM_SUPPORTED, deviceIdx);
TLLM_LOG_DEBUG("FabricMemory::supportFbaricMemory fabric_handle_supported:%d", fabric_handle_supported);
TLLM_LOG_DEBUG("FabricMemory::supportFbaricMemory gpu_direct_rdma_with_cuda_vmm_supported:%d",
gpu_direct_rdma_with_cuda_vmm_supported);
if (ret0 != CUresult::CUDA_SUCCESS || ret1 != CUresult::CUDA_SUCCESS || fabric_handle_supported == 0
|| gpu_direct_rdma_with_cuda_vmm_supported == 0)
{
return false;
}
CUmemAllocationHandleType const handle_type = CU_MEM_HANDLE_TYPE_FABRIC;
CUmemAllocationProp prop = {};
prop.requestedHandleTypes = handle_type;
prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = deviceIdx;
prop.allocFlags.gpuDirectRDMACapable = 1;
size_t granularity{0};
TLLM_CU_CHECK(cuMemGetAllocationGranularity(&granularity, &prop, CU_MEM_ALLOC_GRANULARITY_MINIMUM));
CUmemGenericAllocationHandle handle;
auto cuRet = cuMemCreate(&handle, granularity, &prop, 0);
if (cuRet == CUresult::CUDA_SUCCESS)
{
TLLM_CU_CHECK(cuMemRelease(handle));
return true;
}
if (cuRet == CUresult::CUDA_ERROR_NOT_PERMITTED)
{
TLLM_LOG_WARNING("Try to creat fabric memory failed , setting imex channel may be required");
return false;
}
TLLM_CU_CHECK(cuRet);
return false;
};
static bool support = support_fun();
return support;
#else
return false;
#endif
}
CacheTransBufferManager::CacheTransBufferManager(
KVCacheManager::BaseKVCacheManager* cacheManager, std::optional<size_t> maxNumTokens)
: mCacheManager{cacheManager}
, mBufferManager{std::make_shared<runtime::CudaStream>()}
{
// TODO: FP4 dataSize
TLLM_CHECK(mCacheManager);
mDataType = mCacheManager->getPrimaryPool(0)->getDataType();
auto tokensPerBlock = mCacheManager->getBlockManager().getTokensPerBlock();
size_t bufferSizeFromMaxNumToken = 0;
if (maxNumTokens.has_value())
{
TLLM_CHECK(maxNumTokens.value() % tokensPerBlock == 0);
auto dataSize = common::getDTypeSize(mDataType);
auto kvCacheByteSizePerTokenPerLayer = mCacheManager->getBlockManager().getBlockSize(0) / tokensPerBlock
* (mCacheManager->getCacheType() == CacheType::kSELFKONLY ? 1 : 2) * dataSize;
for (auto layerId = 0; layerId < mCacheManager->getBlockManager().getNumLayers(); layerId++)
{
auto poolIdx = mCacheManager->getBlockManager().getLayerPoolIdx(layerId);
auto windowSize = static_cast<size_t>(mCacheManager->getBlockManager().getPoolWindowSize(poolIdx));
auto validTokenNum = windowSize < maxNumTokens.value() ? windowSize : maxNumTokens.value();
bufferSizeFromMaxNumToken += validTokenNum * kvCacheByteSizePerTokenPerLayer;
}
}
mTransferBufferSize
= maxNumTokens.has_value() ? bufferSizeFromMaxNumToken : common::getEnvMemSizeForKVCacheTransferBuffer();
mOnlyUseDynamicBuffer = mTransferBufferSize == 0;
mRecvBufferCount = common::getEnvRequestKVCacheConcurrent() ? common::getEnvKVCacheRecvBufferCount() : 1;
mSendBufferCount = common::getEnvParallelCacheSend() ? common::getEnvKVCacheSendMaxConcurrenceNum() : 1;
mUseFabricMemory = !(common::getEnvKVCacheTransferUseSyncBuffer() || common::getEnvKVCacheTransferUseAsyncBuffer())
&& FabricMemory::supportFbaricMemory();
if (mUseFabricMemory)
{
mTransferBufferSize = FabricMemory::getAlignedSize(mTransferBufferSize);
}
mPreAllocBufferSize = mTransferBufferSize * (mRecvBufferCount + mSendBufferCount);
TLLM_LOG_INFO(
"CacheTransBufferManager: mMaxNumTokens:%ld, mRecvBufferCount:%ld, "
"mSendBufferCount:%ld,mTransferBufferSize:%ld, mPreAllocBufferSize:%ld,mOnlyUseDynamicBuffer:%d "
"mUseFabricMemory:%d",
maxNumTokens.has_value() ? maxNumTokens.value() : 0, mRecvBufferCount, mSendBufferCount, mTransferBufferSize,
mPreAllocBufferSize, mOnlyUseDynamicBuffer, mUseFabricMemory);
bool to_allocate = common::getEnvUseMPIKvCache() || common::getEnvUseUCXKvCache() || common::getEnvUseNixlKvCache();
TLLM_CHECK_WITH_INFO(to_allocate, "CacheTransBufferManager: to_allocate is false");
allocateBuffer();
}
size_t CacheTransBufferManager::preAllocBufferSize(std::optional<size_t> maxNumTokens)
{
bool to_allocate = common::getEnvUseMPIKvCache() || common::getEnvUseUCXKvCache() || common::getEnvUseNixlKvCache();
if (!to_allocate)
{
return 0;
}
size_t TransferBufferSize = common::getEnvMemSizeForKVCacheTransferBuffer();
if (maxNumTokens.has_value())
{
TransferBufferSize = maxNumTokens.value();
}
bool useFabricMemory = FabricMemory::supportFbaricMemory()
&& (!(common::getEnvKVCacheTransferUseSyncBuffer() || common::getEnvKVCacheTransferUseAsyncBuffer()));
if (useFabricMemory)
{
TransferBufferSize = FabricMemory::getAlignedSize(TransferBufferSize);
}
size_t RecvBufferCount = common::getEnvRequestKVCacheConcurrent() ? common::getEnvKVCacheRecvBufferCount() : 1;
size_t SendBufferCount = common::getEnvParallelCacheSend() ? common::getEnvKVCacheSendMaxConcurrenceNum() : 1;
size_t PreAllocBufferSize = TransferBufferSize * (RecvBufferCount + SendBufferCount);
return PreAllocBufferSize;
}
std::optional<int> CacheTransBufferManager::assignBufferIndexForSend()
{
return assignBufferIndex(mConcurrenceSendResource, mSendBufferCount, mOnlyUseDynamicBuffer);
}
void CacheTransBufferManager::freeBufferIndexForSend(std::optional<int> bufferId)
{
freeBufferIndex(mConcurrenceSendResource, bufferId, mSendBufferCount, mOnlyUseDynamicBuffer);
}
std::optional<int> CacheTransBufferManager::assignBufferIndexForRecv()
{
return assignBufferIndex(mConcurrenceRecvResource, mRecvBufferCount, mOnlyUseDynamicBuffer);
}
void CacheTransBufferManager::freeBufferIndexForRecv(std::optional<int> bufferId)
{
freeBufferIndex(mConcurrenceRecvResource, bufferId, mRecvBufferCount, mOnlyUseDynamicBuffer);
}
std::tuple<std::vector<runtime::ITensor::SharedPtr>, size_t, bool> CacheTransBufferManager::getOrAllocateSendBuffers(
std::optional<int> bufferId, int targetNum, size_t targetBufferSize,
runtime::BufferManager const& bufferManagerToUse)
{
return getOrAllocateBuffers(bufferId, targetNum, targetBufferSize, bufferManagerToUse, mConcurrenceSendResource);
}
std::tuple<std::vector<runtime::ITensor::SharedPtr>, size_t, bool> CacheTransBufferManager::getOrAllocateRecvBuffers(
std::optional<int> bufferId, int targetNum, size_t targetBufferSize,
runtime::BufferManager const& bufferManagerToUse)
{
return getOrAllocateBuffers(bufferId, targetNum, targetBufferSize, bufferManagerToUse, mConcurrenceRecvResource);
}
runtime::ITensor::SharedPtr CacheTransBufferManager::getSendBuffer(std::optional<int> bufferId)
{
TLLM_CHECK(bufferId.has_value() || mOnlyUseDynamicBuffer);
if (bufferId.has_value())
{
TLLM_CHECK(static_cast<size_t>(bufferId.value()) < mSendBufferCount);
return mConcurrenceSendResource.mBuffers[bufferId.value()];
}
return nullptr;
}
runtime::ITensor::SharedPtr CacheTransBufferManager::getRecvBuffer(std::optional<int> bufferId)
{
TLLM_CHECK(bufferId.has_value() || mOnlyUseDynamicBuffer);
if (bufferId.has_value())
{
TLLM_CHECK(static_cast<size_t>(bufferId.value()) < mRecvBufferCount);
// TLLM_CHECK(mConcurrenceRecvResource.mBufferIndexFlag[bufferId.value()] == 1);
return mConcurrenceRecvResource.mBuffers[bufferId.value()];
}
return nullptr;
}
std::tuple<std::vector<runtime::ITensor::SharedPtr>, size_t, bool> CacheTransBufferManager::getOrAllocateBuffers(
std::optional<int> bufferId, int targetNum, size_t targetBufferEleSize,
runtime::BufferManager const& bufferManagerToUse, ConcurrenceResource& concurrenceResource)
{
TLLM_CHECK(bufferId.has_value() || mOnlyUseDynamicBuffer);
std::vector<runtime::ITensor::SharedPtr> retSplitCaches;
size_t bufferCoverTargetNum = std::min(
static_cast<size_t>(targetNum), mTransferBufferSize / (targetBufferEleSize * common::getDTypeSize(mDataType)));
TLLM_LOG_DEBUG("getOrAllocateBuffers bufferCoverTargetNum:%d", bufferCoverTargetNum);
if (bufferId.has_value())
{
TLLM_CHECK(static_cast<size_t>(bufferId.value()) < concurrenceResource.mBuffers.size());
TLLM_CHECK(concurrenceResource.mBufferIndexFlag[bufferId.value()] == 1);
for (int i = 0; i < targetNum; i++)
{
if (static_cast<size_t>(i) < bufferCoverTargetNum)
{
auto slice = runtime::ITensor::slice(
concurrenceResource.mBuffers[bufferId.value()], i * targetBufferEleSize, targetBufferEleSize);
retSplitCaches.push_back(std::move(slice));
}
else
{
retSplitCaches.push_back(bufferManagerToUse.gpu(
runtime::ITensor::makeShape({static_cast<int64_t>(targetBufferEleSize)}), mDataType));
}
}
}
else
{
for (int i = 0; i < targetNum; i++)
{
retSplitCaches.push_back(bufferManagerToUse.gpu(
runtime::ITensor::makeShape({static_cast<int64_t>(targetBufferEleSize)}), mDataType));
}
}
if (mOnlyUseDynamicBuffer)
{
bufferCoverTargetNum = targetNum;
}
return std::make_tuple(retSplitCaches, bufferCoverTargetNum, mOnlyUseDynamicBuffer);
}
void CacheTransBufferManager::allocateBuffer()
{
if (mOnlyUseDynamicBuffer)
{
return;
}
mBufferEleSize = mTransferBufferSize / common::getDTypeSize(mDataType);
mConcurrenceSendResource.mBufferIndexFlag.resize(mSendBufferCount, 0);
mConcurrenceRecvResource.mBufferIndexFlag.resize(mRecvBufferCount, 0);
if (mUseFabricMemory)
{
mFabricMemory.reserve(mSendBufferCount + mRecvBufferCount);
for (size_t i = 0; i < mSendBufferCount; i++)
{
mFabricMemory.emplace_back(std::make_unique<FabricMemory>(mTransferBufferSize));
mConcurrenceSendResource.mBuffers[i] = runtime::ITensor::wrap(mFabricMemory.back()->getPtr(), mDataType,
runtime::ITensor::makeShape({static_cast<int64_t>(mBufferEleSize)}), mBufferEleSize);
}
for (size_t i = 0; i < mRecvBufferCount; i++)
{
mFabricMemory.emplace_back(std::make_unique<FabricMemory>(mTransferBufferSize));
mConcurrenceRecvResource.mBuffers[i] = runtime::ITensor::wrap(mFabricMemory.back()->getPtr(), mDataType,
runtime::ITensor::makeShape({static_cast<int64_t>(mBufferEleSize)}), mBufferEleSize);
}
}
else if (common::getEnvKVCacheTransferUseAsyncBuffer())
{
for (size_t i = 0; i < mSendBufferCount; i++)
{
mConcurrenceSendResource.mBuffers[i]
= mBufferManager.gpu(runtime::ITensor::makeShape({static_cast<int64_t>(mBufferEleSize)}), mDataType);
}
for (size_t i = 0; i < mRecvBufferCount; i++)
{
mConcurrenceRecvResource.mBuffers[i]
= mBufferManager.gpu(runtime::ITensor::makeShape({static_cast<int64_t>(mBufferEleSize)}), mDataType);
}
mBufferManager.getStream().synchronize();
}
else
{
for (size_t i = 0; i < mSendBufferCount; i++)
{
mConcurrenceSendResource.mBuffers[i] = mBufferManager.gpuSync(
runtime::ITensor::makeShape({static_cast<int64_t>(mBufferEleSize)}), mDataType);
}
for (size_t i = 0; i < mRecvBufferCount; i++)
{
mConcurrenceRecvResource.mBuffers[i] = mBufferManager.gpuSync(
runtime::ITensor::makeShape({static_cast<int64_t>(mBufferEleSize)}), mDataType);
}
}
}
std::optional<int> CacheTransBufferManager::assignBufferIndex(
ConcurrenceResource& resource, size_t bufferCount, bool onlyUseDynamicBuffer)
{
if (onlyUseDynamicBuffer)
{
return std::nullopt;
}
std::unique_lock lk(resource.mBuffersMutex);
resource.mBuffersCV.wait(
lk, [&resource, bufferCount]() { return static_cast<size_t>(resource.mConcurrence) < bufferCount; });
int bufferId = -1;
for (size_t i = 0; i < bufferCount; i++)
{
if (resource.mBufferIndexFlag[i] == 0)
{
bufferId = i;
resource.mBufferIndexFlag[bufferId] = 1;
resource.mConcurrence++;
break;
}
}
TLLM_CHECK_WITH_INFO(bufferId >= 0 && static_cast<size_t>(bufferId) < bufferCount,
" assignBufferIndex: Buffer index already assigned");
return bufferId;
}
void CacheTransBufferManager::freeBufferIndex(
ConcurrenceResource& resource, std::optional<int> bufferId, size_t bufferCount, bool onlyUseDynamicBuffer)
{
if (onlyUseDynamicBuffer)
{
return;
}
if (bufferId.has_value())
{
TLLM_CHECK(static_cast<size_t>(bufferId.value()) < bufferCount);
{
std::scoped_lock lk(resource.mBuffersMutex);
resource.mBufferIndexFlag[bufferId.value()] = 0;
}
resource.mConcurrence--;
resource.mBuffersCV.notify_one();
}
}
size_t CacheTransBufferManager::getRecvBufferCount()
{
return mRecvBufferCount;
}
size_t CacheTransBufferManager::getSendBufferCount()
{
return mSendBufferCount;
}
} // namespace tensorrt_llm::batch_manager::kv_cache_manager